1. kafka文件存储机制
Kafka中发布订阅的对象是topic,我们可以为每类数据创建一个topic,Producers和consumers可以同时从多个topic读写数据。一个kafka集群由一个或多个broker服务器组成,它负责持久化和备份具体的kafka消息。
1. kafka消息存储及发送
消息存储优化:
kafka使用文件存储消息(append only log),这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化是非常艰难的.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数.对于kafka而言,较高性能的磁盘,将会带来更加直接的性能提升.
消息发送优化:
除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题.kafka并没有提供太多高超的技巧;对于producer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息.不过消息量的大小可以通过配置文件来指定.对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次copy和交换(这里涉及到"磁盘IO数据"/"内核内存"/"进程内存"/"网络缓冲区",多者之间的数据copy).
普通程序I/O需要把Disk中的信息复制到系统环境内存(步骤1),再复制到kafka应用环境内存(步骤2),然后步骤3,步骤4到Socket通过网络发出,重复复制文本,I/O消耗大。
一般应用IO方式:
kafka的IO方式:
简单来说,kafka少了内核态到用户态的切换,数据由磁盘获取后直接交网络发送,不必拷贝到内存或应用内,zero-copy。
1.2 kafka消息文件压缩
其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑.可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式.
kafka压缩机制:
- kafka的发送端将消息按照批量(如果批量设置一条或者很小,可能有相反的效果)的方式进行压缩。
- 服务器端直接将压缩消息保存(特别注意,如果kafka的版本不同,那么就存在broker需要先解压缩再压缩的问题,导致消耗资源过多)。
- 消费端自动解压缩:发送端无论采用什么压缩模式,消费端无论设置什么解压模式,都可以自动完成解压缩功能。
- 压缩消息可以和非压缩消息混存:如果你kafka里面先保存的是非压缩消息,后面改成压缩,不用担心,kafka消费端自动支持。
通常来说解压缩发生在消费者程序中,也就是说 Producer 发送压缩消息到 Broker 后,Broker 照单全收并原样保存起来。当 Consumer 程序请求这部分消息时,Broker 依然原样发送出去,当消息到达 Consumer 端后,由 Consumer 自行解压缩还原成之前的消息(不必设置解压格式)。
2. kafka文件存储机制
2.1 相关概念
- Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。
- Topic:一类消息,例如page
- view日志、click日志等都可以以topic的形式存在,Kafka集群能够同时负责多个topic的分发。
- Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。
- Segment:partition物理上由多个segment组成,下面2.2和2.3有详细说明。
- offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息.
2.2 消息存储机制
kafka消息存储包括以下四个部分:
- topic中partition存储分布
- partiton中文件存储方式
- partiton中segment文件存储结构
- 在partition中如何通过offset查找message
2.3 topic中partition存储分布
假设实验环境中Kafka集群只有一个broker,xxx/message-folder为数据文件存储根目录,在Kafka broker中server.properties文件配置(参数log.dirs=xxx/message-folder),例如创建2个topic名 称分别为report_push、launch_info, partitions数量都为partitions=4
存储路径和目录规则为:
xxx/message-folder
|--report_push-0
|--report_push-1
|--report_push-2
|--report_push-3
|--launch_info-0
|--launch_info-1
|--launch_info-2
|--launch_info-3
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。消息发送时都被发送到一个topic,其本质就是一个目录,而topic由是由一些Partition组成。
Partition是一个Queue的结构,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition上,其中的每一个消息都被赋予了一个唯一的offset值。Kafka只维护在Partition中的offset值,因为这个offsite标识着这个partition的message消费到哪条了。Consumer每消费一个消息,offset就会加1。其实消息的状态完全是由Consumer控制的,Consumer可以跟踪和重设这个offset值,这样的话Consumer就可以读取任意位置的消息。
Kafka集群会保存所有的消息,不管消息有没有被消费;我们可以设定消息的过期时间,只有过期的数据才会被自动清除以释放磁盘空间。
Kafka只维护在Partition中的offset值,因为这个offsite标识着这个partition的message消费到哪条了。Consumer每消费一个消息,offset就会加1。其实消息的状态完全是由Consumer控制的,Consumer可以跟踪和重设这个offset值,这样的话Consumer就可以读取任意位置的消息。
把消息日志以Partition的形式存放有多重考虑:
- 第一,方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了
- 第二就是可以提高并发,因为可以以Partition为单位读写了。
Kafka中的topic是以partition的形式存放的,每一个topic都可以设置它的partition数量,Partition的数量决定了组成topic的message的数量。Producer在生产数据时,会按照一定规则(这个规则是可以自定义的)把消息发布到topic的各个partition中。上面将的副本都是以partition为单位的,不过只有一个partition的副本会被选举成leader作为读写用。
2.4 partiton中文件存储方式
存储方式:
- 每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。
- 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。
- 这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。
2.5 partiton中segment文件存储结构
producer发message到某个topic,message会被均匀的分布到多个partition上(随机或根据用户指定的回调函数进行分布),kafka broker收到message往对应partition的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息consumer才能消费,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。
每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。
- segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.
- segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个全局partion的最大offset(偏移message数)。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。
下面文件列表是一个例子,创建一个topicXXX包含1 partition,设置每个segment大小为500MB,并启动producer向Kafka broker写入大量数据,如下图2所示segment文件列表形象说明了上述2个规则:
以上图中一对segment file文件为例,说明segment中index<—->data file对应关系物理结构如下:
上述图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。其中以索引文件中 元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message)、以及该消息的物理偏移 地址为497。
segment data file由许多message组成,下面详细说明message物理结构如下:
参数说明:
关键字 解释说明
8 byte offset 在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message
4 byte message size message大小
4 byte CRC32 用crc32校验message
1 byte “magic" 表示本次发布Kafka服务程序协议版本号
1 byte “attributes" 表示为独立版本、或标识压缩类型、或编码类型。
4 byte key length 表示key的长度,当key为-1时,K byte key字段不填
K byte key 可选
value bytes payload 表示实际消息数据。
2.6 在partition中如何通过offset查找message
例如读取offset=368776的message,需要通过下面2个步骤查找:
第一步查找segment file
上述图2为例,其中00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0.第二个文件 00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1.同样,第三个文件00000000000000737337.index的起始偏移量为737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据offset 二分查找文件列表,就可以快速定位到具体文件。
当offset=368776时定位到00000000000000368769.index|log
第二步通过segment file查找message通过第一步定位到segment file,当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和 00000000000000368769.log的物理偏移地址,然后再通过00000000000000368769.log顺序查找直到 offset=368776为止。
segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它 比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
kafka会记录offset到zk中。但是,zk client api对zk的频繁写入是一个低效的操作。0.8.2 kafka引入了native offset storage,将offset管理从zk移出,并且可以做到水平扩展。其原理就是利用了kafka的compacted topic,offset以consumer group,topic与partion的组合作为key直接提交到compacted topic中。同时Kafka又在内存中维护了的三元组来维护最新的offset信息,consumer来取最新offset信息的时候直接内存里拿即可。当然,kafka允许你快速的checkpoint最新的offset信息到磁盘上。
3. Partition Replication原则
Kafka高效文件存储设计特点:
- Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。
- 通过索引信息可以快速定位message和确定response的最大大小。
- 通过index元数据全部映射到memory,可以避免segment file的IO磁盘操作。
- 通过索引文件稀疏存储,可以大幅降低index文件元数据占用空间大小。
Kafka集群partition replication默认自动分配分析
以一个Kafka集群中4个Broker举例,创建1个topic包含4个Partition,2 Replication;数据Producer流动如图所示:
当集群中新增2节点,Partition增加到6个时分布情况如下:
副本分配逻辑规则如下:
- 在Kafka集群中,每个Broker都有均等分配Partition的Leader机会。
- 上述图Broker Partition中,箭头指向为副本,以Partition-0为例:broker1中parition-0为Leader,Broker2中Partition-0为副本。
- 上述图种每个Broker(按照BrokerId有序)依次分配主Partition,下一个Broker为副本,如此循环迭代分配,多副本都遵循此规则。
副本分配算法如下:
- 将所有N Broker和待分配的i个Partition排序.
- 将第i个Partition分配到第(i mod n)个Broker上.
- 将第i个Partition的第j个副本分配到第((i + j) mod n)个Broker上.
4. 备份机制
备份机制是Kafka0.8版本的新特性,备份机制的出现大大提高了Kafka集群的可靠性、稳定性。有了备份机制后,Kafka允许集群中的节点挂掉后而不影响整个集群工作。一个备份数量为n的集群允许n-1个节点失败。在所有备份节点中,有一个节点作为lead节点,这个节点保存了其它备份节点列表,并维持各个备份间的状体同步。下面这幅图解释了Kafka的备份机制:
5. Consumers 消费队列
在kafka中,当前读到哪条消息的offset值是由consumer来维护的,因此,consumer可以自己决定如何读取kafka中的数据。比如,consumer可以通过重设offset值来重新消费已消费过的数据。不管有没有被消费,kafka会保存数据一段时间,这个时间周期是可配置的,只有到了过期时间,kafka才会删除这些数据。(这一点与AMQ不一样,AMQ的message一般来说都是持久化到mysql中的,消费完的message会被delete掉)
High-level API封装了对集群中一系列broker的访问,可以透明的消费一个topic。它自己维持了已消费消息的状态,即每次消费的都是下一个消息。
High-level API还支持以组的形式消费topic,如果consumers有同一个组名,那么kafka就相当于一个队列消息服务,而各个consumer均衡的消费相应partition中的数据。若consumers有不同的组名,那么此时kafka就相当与一个广播服务,会把topic中的所有消息广播到每个consumer。
High level api是consumer读的partition的offsite是存在zookeeper上。High level api 会启动另外一个线程去每隔一段时间,offsite自动同步到zookeeper上。换句话说,如果使用了High level api, 每个message只能被读一次,一旦读了这条message之后,无论我consumer的处理是否ok。High level api的另外一个线程会自动的把offiste+1同步到zookeeper上。如果consumer读取数据出了问题,offsite也会在zookeeper上同步。因此,如果consumer处理失败了,会继续执行下一条。这往往是不对的行为。因此,Best Practice是一旦consumer处理失败,直接让整个conusmer group抛Exception终止,但是最后读的这一条数据是丢失了,因为在zookeeper里面的offsite已经+1了。等再次启动conusmer group的时候,已经从下一条开始读取处理了。
Low level api是consumer读的partition的offsite在consumer自己的程序中维护。不会同步到zookeeper上。但是为了kafka manager能够方便的监控,一般也会手动的同步到zookeeper上。这样的好处是一旦读取某个message的consumer失败了,这条message的offsite我们自己维护,我们不会+1。下次再启动的时候,还会从这个offsite开始读。这样可以做到exactly once对于数据的准确性有保证。
参考资料:
Kafka原理总结