5.曾鸣课笔记-网络协同:Uber错在哪

Uber是有史以来成长最快的公司,创立不到六年,估值已经攀升到600多亿美金。更重要的是,这家公司产生了巨大的社会示范效应。Uber开始代指共享经济,成了最热门的词,一段时间很多人都在说要做某某领域的Uber。

但是在高速发展之后,这一年多Uber碰到了很大的挑战,增长乏力。 Uber到底做对了什么?又在哪些方面有什么样的欠缺?深入地解剖Uber可以更好地帮助我们理解和把握新商业模式的核心要素。

Uber做对的事:数据智能

毫无疑问Uber是共享经济的先行者。特别是在美国,传统出租车在大部分城市受到牌照的限制,供给严重不足,价格高昂,而且很多地方根本就没有出租车的服务。

Uber鼓励很多业余司机加入进来提供出行服务,释放了大量的社会闲置资源,极大提高了客户体验,带动了共享经济的发展。这肯定是Uber成功的关键要素之一。

但大部分人可能没有意识到, Uber的成功很大程度上也是建立在数据智能的基础之上的。 Uber把一个传统行业改造为了一个基于数据和算法的智能商业。由于移动互联网的普及,智能手机变得极为廉价,GPS的实时地图服务也足够的准确,乘客和司机的位置可以实时在线。而云计算、人工智能、机器学习的高速发展,使得实时匹配海量乘客和车辆成为可能。乘客和司机能够得到的高效和便捷,远远地超出了传统出租行业。

同时,由于数据智能引擎的存在还有很多创新被引进。最核心的就是市场定价。通过高峰期加价,引导乘客用不同的出价方式表达自己的需求,打破了传统定价的刚性,这是非常典型的用市场化的方法解决社会问题。没有数据智能的基础是做不到的。

但是近两年Uber的发展似乎进入了瓶颈期,一方面追赶者的脚步日益迫近,同时它进入新的领域也屡遭挫折,这些都表明它正在面临一些根本性的挑战。理解这些挑战一方面可以帮助我们理解互联网时代商业模式的关键,同时更重要的是,帮助那些想模仿Uber模式的创业者,对于自己未来的取舍有一个更清晰的认知。

Uber忽略的事:网络效应

Uber问题的核心在于没有真正意义上的网络效应。 互联网时代价值创造最重要的源泉是网络效应。Facebook、微信都是非常典型的需求端的网络效应,用户会主动传播,帮助企业接近零成本地获取新用户;用户越多就会吸引更多的人加入这个网络,这个网络的价值自然就越来越大。

如果我们认真思考Uber的核心优势,从经济学的角度来说,Uber其实并没有享受到多大的网络效应。它更大的价值还是来源于传统的规模经济。快速扩张供给端,吸引众多的司机到这个平台上,带来规模优势。原来被挡在专业门槛之外没有牌照的服务者,加入了市场提供服务,大大地提高了服务质量,也降低了价格。

一个重要的推论是没有网络效应,单靠规模经济是没有办法形成垄断的。 那些依靠网络效应的企业,类似微信,才能够赢者通吃。如果在需求端没有网络效应,供给端的规模效应再强大,用户的转移成本依然很低。

就像很多人手机上曾经装过好几个租车的App,无论是滴滴、优步、神州还是易到,使用时可以随时切换。这么重要的高频应用为了使用时的方便,获得确定性的服务,对于用户来说,多下载一个App并不算太高的成本。同时由于在波峰时期,几乎没有任何一个网络能够提供足够好的体验,所以给跟随者也留下了生存的空间。更不用说司机们,同时安装几个App、同时接单几乎是常态。

这其实是说, 规模经济的壁垒比网络效应的壁垒要低得多,可以使用海量资本进行密集轰炸而克服。 就像今天我们看到的,在中国即使滴滴和Uber合并了,神州依然在扩张,同时首汽约车、曹操专车等新的玩家还在不断进入。滴滴即使取得了这么大的规模优势,它依然没有办法形成垄断,防止不了新的玩家进入这个市场。

另外值得强调的一点,Uber能够如此快速扩张的根本原因之一,是打车作为一个用户场景相对简单,从一个简单的点切入,可以带来快速的发展。 但是这样一个简单的场景,同时也制约了Uber发展,限制了它成为更加复杂的多边市场和更有生命力的生态潜力。

这一点很重要,因为这关系到网络协同是怎么在实际中发挥价值的。

网络协同的力量

我们拿Uber和淘宝作一个对比,就能够比较清楚地看到这一点。

相对于打车,淘宝要处理的是复杂得多的商品交易。当年为了完成这个几乎不可能完成的任务,淘宝逐步地摸索出了在线支付、担保交易、信用评价、消费保证等一系列看起来不那么重要,但是实际上至关重要的知识体系。

为了逐步摸索出这些服务,淘宝早期的发展速度并不算快。一直到2007年,大部分人并没有把淘宝当作一个快速发展的互联网企业。但是当这些体系一旦建立了,加上淘宝从服装等主打类目快速扩张到更多的类目,最后形成万能的淘宝概念的时候,这个平台的横向扩张能力就非常大了。所以它会快速地从2008年的1000亿扩大到2012年一万亿的年销售额。

同时由于这个横向积累是很厚实的,在纵向方面平台也有了强大的拓展能力,淘宝逐步从零售走到广告、营销、物流、金融等新的创新领域。 淘宝能有这样的广度和深度,很大程度上是由于网络自己有很大的扩张动力。不同类型的卖家聚集在一起,不但可以分摊各种基础服务的成本,也能分摊获取客户的成本。淘宝的核心是商品的丰富性,不是简单的规模。

而Uber上的司机也好、乘客也好,都是相当简单和同质化的角色,这样的网络是缺乏自主生长动力的。Uber在打车之外一度被寄予厚望的快递服务、送餐服务的业务扩张并不顺利,根本原因在于这不是原有网络的自然延伸,而需要靠管理者去复制在原有领域的成功。

但是在这个时代,靠管理去复制原有模式,是很难比得过在另一个领域里面有更深积累的创业者的爆发力的。所以我们可以看到,其他所谓Uber化的场景,反而是创新的团队赢了,而Uber并没有扩张出去。

当我们把Uber跟淘宝做了一个直接的对比之后,大家就能看到商业模式DNA的重要性。淘宝作为一个协同网,是在广度跟深度上不断快速自我扩张。在这个基础之上,又加入了数据智能带来的价值,所以淘宝带动整个阿里巴巴集团快速推进到了3000亿美金这样的市值。

但回过头来看Uber,如果我们扮演一个事后诸葛亮的角色的话,可以说Uber在短短的时间内突破到600亿美金的估值,核心是数据智能这个引擎在出租车这个足够大的市场瞬间得到了爆发,创造了巨大的价值。但是Uber这两年发展的停滞,包括我们没有听到它要上市的计划,原因在于大家不清楚Uber下一个价值创造的源泉是什么。

也许可以做个判断,Uber在网络协同的方向上已经不太有什么可能性了,这是因为它的DNA天然就比较局限。它起步于一个很薄、很简单的用户场景——打车,这个场景本身不太具备相关扩张的可能性。所以我们也可以看到Uber把自己下一步的发展方向定为了自动驾驶。但是自动驾驶本身又是一个巨大的挑战,除非Uber在这个领域有足够大的进展,它的整个发展,包括市场对它的估值暂时都不会有一个大的突破。

今日小结

今天我们结合之前的理论,具体分析了Uber这一案例。

在Uber的发展过程中,它做对的是用数据智能来提升了打车这一双边市场的匹配效率。而它忽略的,是没有在网络效应上有真正的突破,网络协同的广度和深度都不够。

希望通过这一讲对Uber案例的深入分析,你可以对比、认真思考,自己所在企业在商业模式方面的积累。在哪一个方面积累的商业DNA比较强,往哪个方向发展的可能空间更大。欢迎你与朋友分享,一起参与讨论。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容