[译]Kotlin是如何帮助你避免内存泄漏的?

首先,本文的代码位置在https://github.com/marcosholgado/performance-test/tree/kotlin-mem-leak中的kotlin-mem-leak分支上。
我是通过创建一个会导致内存泄漏的Activity,然后观察其使用JavaKotlin编写时的表现来进行测试的。
其中Java代码如下:

public class LeakActivity extends Activity {

  @Override protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_leak);
    View button = findViewById(R.id.button);
    button.setOnClickListener(new View.OnClickListener() {
      @Override
      public void onClick(View v) {
        startAsyncWork();
      }
    });
  }

  @SuppressLint("StaticFieldLeak")
  void startAsyncWork() {
    Runnable work = new Runnable() {
      @Override public void run() {
        SystemClock.sleep(20000);
      }
    };
    new Thread(work).start();
  }
}

如上述代码所示,我们的button点击之后,执行了一个耗时任务。这样如果我们在20s之内关闭LeakActivity的话就会产生内存泄漏,因为这个新开的线程持有对LeakActivity的引用。如果我们是在20s之后再关闭这个Activity的话,就不会导致内存泄漏。
然后我们把这段代码改成Kotlin版本:

class KLeakActivity : Activity() {

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_leak)
        button.setOnClickListener { startAsyncWork() }
    }

    private fun startAsyncWork() {
        val work = Runnable { SystemClock.sleep(20000) }
        Thread(work).start()
    }
}

咋一看,好像就只是在Runable中使用lambda表达式替换了原来的样板代码。然后我使用leakcanary和我自己的@LeakTest注释写了一个内存泄漏测试用例。

class LeakTest {
    @get:Rule
    var mainActivityActivityTestRule = ActivityTestRule(KLeakActivity::class.java)

    @Test
    @LeakTest
    fun testLeaks() {
        onView(withId(R.id.button)).perform(click())
    }
}

我们使用这个用例分别对Java写的LeakActivityKotlin写的KLeakActivity进行测试。测试结果是Java写的出现内存泄漏,而Kotlin写的则没有出现内存泄漏。
这个问题困扰了我很长时间,一度接近自闭。。


然后某天,我突然灵光一现,感觉应该和编译后字节码有关系。

分析LeakActivity.java的字节码

Java类产生的字节码如下:

.method startAsyncWork()V
    .registers 3
    .annotation build Landroid/annotation/SuppressLint;
        value = {
            "StaticFieldLeak"
        }
    .end annotation

    .line 29
    new-instance v0, Lcom/marcosholgado/performancetest/LeakActivity$2;

    invoke-direct {v0, p0}, Lcom/marcosholgado/performancetest/LeakActivity$2;-><init>
                               (Lcom/marcosholgado/performancetest/LeakActivity;)V

    .line 34
    .local v0, "work":Ljava/lang/Runnable;
    new-instance v1, Ljava/lang/Thread;

    invoke-direct {v1, v0}, Ljava/lang/Thread;-><init>(Ljava/lang/Runnable;)V

    invoke-virtual {v1}, Ljava/lang/Thread;->start()V

    .line 35
    return-void
.end method

我们知道匿名内部类持有对外部类的引用,正是这个引用导致了内存泄漏的产生,接下来我们就在字节码中找出这个引用。

new-instance v0, Lcom/marcosholgado/performancetest/LeakActivity$2;

上述字节码的含义是:
首先我们创建了一个LeakActivity$2的实例。。

奇怪的是我们没有创建这个类啊,那这个类应该是系统自动生成的,那它的作用是什么啊?
我们打开LeakActivity$2的字节码看下

.class Lcom/marcosholgado/performancetest/LeakActivity$2;
.super Ljava/lang/Object;
.source "LeakActivity.java"

# interfaces
.implements Ljava/lang/Runnable;

# instance fields
.field final synthetic this$0:Lcom/marcosholgado/performancetest/LeakActivity;


# direct methods
.method constructor <init>(Lcom/marcosholgado/performancetest/LeakActivity;)V
    .registers 2
    .param p1, "this$0"    # Lcom/marcosholgado/performancetest/LeakActivity;

    .line 29
    iput-object p1, p0, Lcom/marcosholgado/performancetest/LeakActivity$2;
                    ->this$0:Lcom/marcosholgado/performancetest/LeakActivity;

    invoke-direct {p0}, Ljava/lang/Object;-><init>()V

    return-void
.end method

第一个有意思的事是这个LeakActivity$2实现了Runnable接口。

这就说明LeakActivity$2就是那个持有LeakActivity对象引用的匿名内部类的对象。

# interfaces
.implements Ljava/lang/Runnable;

就像我们前面说的,这个LeakActivity$2应该持有LeakActivity的引用,那我们继续找。

# instance fields
.field final synthetic        
    this$0:Lcom/marcosholgado/performancetest/LeakActivity;

果然,我们发现了外部类LeakActivity的对象的引用。
那这个引用是什么时候传入的呢?只有可能是在构造器中传入的,那我们继续找它的构造器。

.method constructor 
    <init>(Lcom/marcosholgado/performancetest/LeakActivity;)V

果然,在构造器中传入了LeakActivity对象的引用。
让我们回到LeakActivity的字节码中,看看这个LeakActivity$2被初始化的时候。

new-instance v0, Lcom/marcosholgado/performancetest/LeakActivity$2;
invoke-direct {v0, p0},   
    Lcom/marcosholgado/performancetest/LeakActivity$2;-><init>    
    (Lcom/marcosholgado/performancetest/LeakActivity;)V

可以看到,我们使用LeakActivity对象来初始化LeakActivity$2对象,这样就解释了为什么LeakActivity.java会出现内存泄漏的现象。

分析 KLeakActivity.kt的字节码

KLeakActivity.kt中我们关注startAsyncWork这个方法的字节码,因为其他部分和Java写法是一样的,只有这部分不一样。
该方法的字节码如下所示:

.method private final startAsyncWork()V
    .registers 3

    .line 20
    sget-object v0, 
      Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;
      ->INSTANCE:Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;

    check-cast v0, Ljava/lang/Runnable;

    .line 24
    .local v0, "work":Ljava/lang/Runnable;
    new-instance v1, Ljava/lang/Thread;

    invoke-direct {v1, v0}, Ljava/lang/Thread;-><init>(Ljava/lang/Runnable;)V

    invoke-virtual {v1}, Ljava/lang/Thread;->start()V

    .line 25
    return-void
.end method

可以看出,与Java字节码中初始化一个包含Activity引用的实现Runnable接口对象不同的是,这个字节码使用了静态变量来执行静态方法。

sget-object v0,         
Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1; -> 
INSTANCE:Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;

我们深入KLeakActivity\$startAsyncWork\$work$1的字节码看下:

.class final Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;
.super Ljava/lang/Object;
.source "KLeakActivity.kt"

# interfaces
.implements Ljava/lang/Runnable;

.method static constructor <clinit>()V
    .registers 1

    new-instance v0, 
      Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;

    invoke-direct {v0}, 
      Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;-><init>()V

    sput-object v0, 
      Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;
      ->INSTANCE:Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;

    return-void
.end method

.method constructor <init>()V
    .registers 1

    invoke-direct {p0}, Ljava/lang/Object;-><init>()V

    return-void
.end method

可以看出,KLeakActivity\$startAsyncWork\$work$1实现了Runnable接口,但是其拥有的是静态方法,因此不需要外部类对象的引用。
所以Kotlin不出现内存泄漏的原因出来了,在Kotlin中,我们使用lambda(实际上是一个 SAM)来代替Java中的匿名内部类。没有Activity对象的引用就不会发生内存泄漏。
当然并不是说只有Kotlin才有这个功能,如果你使用Java8中的lambda的话,一样不会发生内存泄漏。
如果你想对这部分做更深入的了解,可以参看这篇文章Translation of Lambda Expressions
如果有需要翻译的同学可以在评论里面说就行啦。


现在把其中比较重要的一部分说下:

上述段落中的Lamdba表达式可以被认为是静态方法。因为它们没有使用类中的实例属性,例如使用super、this或者该类中的成员变量。
我们把这种Lambda称为Non-instance-capturing lambdas(这里我感觉还是不翻译为好)。而那些需要实例属性的Lambda则称为instance-capturing lambdas

Non-instance-capturing lambdas可以被认为是private、static方法。instance-capturing lambdas可以被认为是普通的private、instance方法。

这段话放在我们这篇文章中是什么意思呢?

因为我们Kotlin中的lambda没有使用实例属性,所以其是一个non-instance-capturing lambda,可以被当成静态方法来看待,就不会产生内存泄漏。

如果我们在其中添加一个外部类对象属性的引用的话,这个lambda就转变成instance-capturing lambdas,就会产生内存泄漏。

class KLeakActivity : Activity() {

    private var test: Int = 0

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_leak)
        button.setOnClickListener { startAsyncWork() }
    }

    private fun startAsyncWork() {
        val work = Runnable {
            test = 1 // comment this line to pass the test
            SystemClock.sleep(20000)
        }
        Thread(work).start()
    }
}

如上述代码所示,我们使用了test这个实例属性,就会导致内存泄漏。
startAsyncWork方法的字节码如下所示:

.method private final startAsyncWork()V
    .registers 3

    .line 20
    new-instance v0, Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;

    invoke-direct {v0, p0}, 
       Lcom/marcosholgado/performancetest/KLeakActivity$startAsyncWork$work$1;
       -><init>(Lcom/marcosholgado/performancetest/KLeakActivity;)V

    check-cast v0, Ljava/lang/Runnable;

    .line 24
    .local v0, "work":Ljava/lang/Runnable;
    new-instance v1, Ljava/lang/Thread;

    invoke-direct {v1, v0}, Ljava/lang/Thread;-><init>(Ljava/lang/Runnable;)V

    invoke-virtual {v1}, Ljava/lang/Thread;->start()V

    .line 25
    return-void
.end method

很明显,我们传入了KLeakActivity的对象,因此就会导致内存泄漏。

啊,终于翻译完了,可以去睡觉了!!


原文地址

How Kotlin helps you avoid memory leaks

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,636评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,890评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,680评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,766评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,665评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,045评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,515评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,182评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,334评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,274评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,319评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,002评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,599评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,675评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,917评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,309评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,885评论 2 341

推荐阅读更多精彩内容