Kibana6 入门1 - 加载样例数据

官方文档开始部分的说明,介绍,安装都很简单,就不翻译了。跟以前的版本也没啥太大的区别。
从 Tutorial 的 Getting Started 章节开始。

加载样例数据

本章节要加载的样例数据集如下:

  • 莎士比亚全集,并且已经进行了属性的切分,下载地址 shakespeare.json
  • 随机数据组成的虚拟账户集合,下载地址 accounts
  • 随机生成的日志文件集合,下载地址 logs.jsonl.gz

对于压缩文件需要解压

unzip accounts.zip
gunzip logs.jsonl.gz

莎士比亚全集的数据结构:

{
    "line_id": INT,
    "play_name": "String",
    "speech_number": INT,
    "line_number": "String",
    "speaker": "String",
    "text_entry": "String",
}

账户数据结构:

{
    "account_number": INT,
    "balance": INT,
    "firstname": "String",
    "lastname": "String",
    "age": INT,
    "gender": "M or F",
    "address": "String",
    "employer": "String",
    "email": "String",
    "city": "String",
    "state": "String"
}

日志的数据结构有很多不同属性,但本教程使用的属性如下:

{
    "memory": INT,
    "geo.coordinates": "geo_point"
    "@timestamp": "date"
}

加载莎士比亚全集和日志文件集合之前,需要建立属性映射。映射会将索引中的文档进行逻辑分组,并确定属性的特性。比如属性是否支持搜索,是否可以被分词,是否可以被切分为单独的词。
使用如下命令在Elasticsearch上为莎士比亚全集建立映射:

curl -XPUT 'localhost:9200/shakespeare?pretty' -H 'Content-Type: application/json' -d'
{
 "mappings": {
  "doc": {
   "properties": {
    "speaker": {"type": "keyword"},
    "play_name": {"type": "keyword"},
    "line_id": {"type": "integer"},
    "speech_number": {"type": "integer"}
   }
  }
 }
}'

根据映射的定义, 莎士比亚全集的数据具有如下特性:

  • speakerplay_name 属性是关键字,所以它们不会被分词。这些字符串即使由多个单词组成,也会被当作一个完整独立的个体。
  • line_idspeech_number 是整形的。
    可以通过在这些属性上使用 type geo_point,将日志文件中的纬度/经度进行标记,映射为地理信息。
    使用如下命令在日志中建立geo_point映射:
curl -XPUT 'localhost:9200/logstash-2015.05.18?pretty' -H 'Content-Type: application/json' -d'
{
  "mappings": {
    "log": {
      "properties": {
        "geo": {
          "properties": {
            "coordinates": {
              "type": "geo_point"
            }
          }
        }
      }
    }
  }
}'
curl -XPUT 'localhost:9200/logstash-2015.05.19?pretty' -H 'Content-Type: application/json' -d'
{
  "mappings": {
    "log": {
      "properties": {
        "geo": {
          "properties": {
            "coordinates": {
              "type": "geo_point"
            }
          }
        }
      }
    }
  }
}'
curl -XPUT 'localhost:9200/logstash-2015.05.20?pretty' -H 'Content-Type: application/json' -d'
{
  "mappings": {
    "log": {
      "properties": {
        "geo": {
          "properties": {
            "coordinates": {
              "type": "geo_point"
            }
          }
        }
      }
    }
  }
}'

账户数据集不需要映射。
使用 Elasticsearch [bulk] API 来加载数据集合:

curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/shakespeare/doc/_bulk?pretty' --data-binary @shakespeare_6.0.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/_bulk?pretty' --data-binary @logs.jsonl

执行下面的命令来验证是否成功:

curl -XGET 'localhost:9200/_cat/indices?v&pretty'

结果应该如下:

health status index               pri rep docs.count docs.deleted store.size pri.store.size
yellow open   bank                  5   1       1000            0    418.2kb        418.2kb
yellow open   shakespeare           5   1     111396            0     17.6mb         17.6mb
yellow open   logstash-2015.05.18   5   1       4631            0     15.6mb         15.6mb
yellow open   logstash-2015.05.19   5   1       4624            0     15.7mb         15.7mb
yellow open   logstash-2015.05.20   5   1       4750            0     16.4mb         16.4mb
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343