KAFKA 常用命令解析

创建kafka topic

bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic topicname --partitions 12 --replication-factor 2

注: partitions指定topic分区数,replication-factor指定topic每个分区的副本数

partitions分区数:

partitions :分区数,控制topic将分片成多少个log。可以显示指定,如果不指定则会使用broker(server.properties)中的num.partitions配置的数量

虽然增加分区数可以提供kafka集群的吞吐量、但是过多的分区数或者或是单台服务器上的分区数过多,会增加不可用及延迟的风险。因为多的分区数,意味着需要打开更多的文件句柄、增加点到点的延时、增加客户端的内存消耗。

分区数也限制了consumer的并行度,即限制了并行consumer消息的线程数不能大于分区数

分区数也限制了producer发送消息是指定的分区。如创建topic时分区设置为1,producer发送消息时通过自定义的分区方法指定分区为2或以上的数都会出错的;这种情况可以通过alter –partitions 来增加分区数。

replication-factor副本

replication factor 控制消息保存在几个broker(服务器)上,一般情况下等于broker的个数。

如果没有在创建时显示指定或通过API向一个不存在的topic生产消息时会使用broker(server.properties)中的default.replication.factor配置的数量

查看所有topic列表

bin/kafka-topics.sh --zookeeper localhost:2181 --list

查看指定topic信息

bin/kafka-topics.sh --zookeeper localhost:2181 --describe --topic t_cdr


控制台向topic生产数据

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic t_cdr

控制台消费topic的数据

bin/kafka-console-consumer.sh  --zookeeper localhost:2181  --topic t_cdr --from-beginning

查看topic某分区偏移量最大(小)值

bin/kafka-run-class.sh kafka.tools.GetOffsetShell --topic hive-mdatabase-hostsltable  --time -1 --broker-list localhost:9092 --partitions 0

注: time为-1时表示最大值,time为-2时表示最小值

增加topic分区数

为topic t_cdr 增加10个分区

bin/kafka-topics.sh --zookeeper localhost:2181  --alter --topic t_cdr --partitions 10

删除topic,慎用,只会删除zookeeper中的元数据,消息文件须手动删除

bin/kafka-run-class.sh kafka.admin.DeleteTopicCommand --zookeeper localhost:2181 --topic t_cdr

查看topic消费进度

这个会显示出consumer group的offset情况, 必须参数为--group, 不指定--topic,默认为所有topic

Displays the: Consumer Group, Topic, Partitions, Offset, logSize, Lag, Owner for the specified set of Topics and Consumer Group

bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker

required argument: [group]

Option Description

------ -----------

--broker-info Print broker info

--group Consumer group.

--help Print this message.

--topic Comma-separated list of consumer

  topics (all topics if absent).

--zkconnect ZooKeeper connect string. (default: localhost:2181)

Example,

bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --group pv

Group          Topic              Pid Offset  logSize    Lag    Owner

pv              page_visits        0  21      21        0      none

pv              page_visits        1  19      19        0      none

pv              page_visits        2  20      20        0      none


Kafka 原理 

Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

Kafka主要设计目标如下:

以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。

高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条(也就是100000条——十万)消息的传输。

支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。

同时支持离线数据处理和实时数据处理。

Kafka专用术语:

Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。

Topic:一类消息,Kafka集群能够同时负责多个topic的分发。

Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。

Segment:partition物理上由多个segment组成。

offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息

topic & partition

  在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。

  这里也就是broker——>topic——>partition——>segment 

  segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件。

  segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

  segment中index与data file对应关系物理结构如下:

  索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。

  其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message),以及该消息的物理偏移地址为497。

副本(replication)策略

    1.数据同步

    kafka 0.8后提供了Replication机制来保证Broker的failover。

    引入Replication之后,同一个Partition可能会有多个Replica,而这时需要在这些Replication之间选出一个Leader,Producer和Consumer只与这个Leader交互,其它Replica作为Follower从Leader中复制数据。

  2.副本放置策略

Kafka分配Replica的算法如下(注意!!! 下面的broker、partition副本数这些编号都是从0开始编号的):

    将所有存活的N个Brokers和待分配的Partition排序

将第i个Partition分配到第(i mod n)个Broker上,这个Partition的第一个Replica存在于这个分配的Broker上,并且会作为partition的优先副本( 这里就基本说明了一个topic的partition在集群上的大致分布情况 )

      将第i个Partition的第j个Replica分配到第((i + j) mod n)个Broker上

      假设集群一共有4个brokers,一个topic有4个partition,每个Partition有3个副本。下图是每个Broker上的副本分配情况。

对于Kafka而言,定义一个Broker是否“活着”包含两个条件:

一是它必须维护与ZooKeeper的session(这个通过ZooKeeper的Heartbeat机制来实现)。

二是Follower必须能够及时将Leader的消息复制过来,不能“落后太多”。

重点在于kafka中partition的副本放置算法,同时间接说明了一个topic的partition在集群中的分配情况...

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容