HIVE简介与安装

基于hadoop的数据仓库工具,封装了mapreduce,大大简化了开发过程(简单来说,就是把sql变成了mapreduce程序)。!!!这里说的是hive-1.2.1,在2.几的版本时不支持mapreduce了,支持spark。利用hdfs存储数据,利用mapreduce查询数据。
与传统关系型数据库的对比:

与RDBMS对比

数据库与数据仓库

目标目的组织方式都不同。
数据库,一般是关系型,支持在线联机业务。进行实时事务控制。数据库中有不止一张不同的业务表。而数据仓库存储的是历史的业务数据(即数据库中导出的历史数据),主要用于数据分析。一般是非关系型,是宽表,不在乎数据是否冗余,按照历史和主题来组织。分析的结果支持公司的运营,可以按照指标+维度(粒度)来产生报表,组织的模型有:星形模型,雪花模型。

hive的工作机制

如下图,当我们使用hive时写sql建表和数据库时,其实就是创建了/usr/hive/warehouse/下的目录,这些目录位置信息都由hive存到了另外的数据库(mysql等,hive自带的derby)中。当我们执行查找等操作时,hive中的compiler先解析sql语句(最难的部分),然后转换成mapreduce程序(hive里有mapreduce模板),由hive的jobrunner提交任务给yarn执行。基于mapreduce执行会比较慢,纯粹用来做离线数据分析。

hive的工作机制
架构图

hive安装

hive只在一个节点上安装即可。
1 上传解压hive的tar包
2 安装mysql

rpm -qa | mysql
rpm -e --nodeps mysql
yum list | grep mysql
yum install -y mysql-server mysql mysql-dev_
rpm -qi mysql -server(查看版本信息)
service mysqld start
chkconfig mysqld on(设置开机自启)
mysqladmin -u root password 'root'
cat /etc/my.cnf(查看主配置文件)
netstat -nltp(linux系统是否监听3306端口)

3 配置hive
不用提供的模板,直接来一个新的hive-site.xml

vi hive-site.xml
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>root</value>
<description>password to use against metastore database</description>
</property>
</configuration>

4 启动hive
安装完成后,先将mysql连接jar包(没有可以到maven中央仓库下载)拷贝到$HIVE_HOME/lib目录下(ll my.* 查看是否成功)。
若果出现没有权限问题,在mysql授权:

mysql -u root -p
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'root' WITH GRANT OPTION;
FLUSH PRIVILEGES;

启动:
hive 交互式shell:
bin/hive
hive启动时会找到hadoop的配置文件,加载hadoop所有的jar包到它的classpath,此时Jline包版本不同会报错。解决办法:
拷贝hive/lib中的jline.2.12.jar包替换/home/hadoop/apps/hadoop-2.6.4/share/hadoop/yarn/lib/jline-0.9.94.jar,即可正常启动。
hive命令
hive -e 'sql',从命令行执行指定hql
hive -f执行hql脚本
hive thrift服务:
启动thrift服务后,只要是符合thrift协议的客户端都可以连接。hive自带了一个客户端beeline

[hadoop@mini1 hive]$ cd bin/
[hadoop@mini1 bin]$ ./beeline 
Beeline version 1.2.1 by Apache Hive
beeline> !connect jdbc:hive2://localhost:10000
Connecting to jdbc:hive2://localhost:10000
Enter username for jdbc:hive2://localhost:10000: hadoop(username默认hadoop,无密码)
Enter password for jdbc:hive2://localhost:10000: 
Connected to: Apache Hive (version 1.2.1)
Driver: Hive JDBC (version 1.2.1)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://localhost:10000> showdatabases;

启动服务后转换为后台:nohup bin/hiveserver2 1>/var/log/hiveserver.log 2>/var/log/hiveserver.err &
beeline也可以启动就连接:bin/beeline -u jdbc:hive2://mini1:10000 -n hadoop
5 简单操作:

hive>
hive>show databases;
hive>create database haha;
hive>use haha;
hive>create table t_1(id int,name string);##可以在mini:50070查看
vi t.dat并写入数据
hadoop fs -put t.dat /user/hive/warehouse/haha.db/t_1/
hive>select * from t_1;
hive> truncate table t_1;(清空表里的数据)
hive> drop table t_1;(删除表)
hive> use haha;
OK
Time taken: 0.101 seconds
hive> create table t_sz01(id int,name string)
    > row format delimited
    > fields terminated by ',';
OK
Time taken: 0.435 seconds
hive> show tables;
OK
t_sz01
Time taken: 0.096 seconds, Fetched: 1 row(s)
hadoop fs -put t.dat /user/hive/warehouse/haha.db/t_sz01
hive> select * from t_sz01;
OK
1       h
2       r
3       rg
4       qgqa
5       fdf
6       aff
Time taken: 0.322 seconds, Fetched: 6 row(s)
hive> select count(1) from t_sz01;
Query ID = hadoop_20170808175951_074dd63d-dc84-4125-9b15-2efb1462ca26
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Job running in-process (local Hadoop)
2017-08-08 17:59:53,976 Stage-1 map = 0%,  reduce = 0%
2017-08-08 17:59:55,995 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_local817039614_0001
MapReduce Jobs Launched: 
Stage-Stage-1:  HDFS Read: 128 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
6
Time taken: 4.726 seconds, Fetched: 1 row(s) #mapreduce可以在mini1:8088看见
hive> select id,name from t_sz01 where id>3;
hive> select id,name from t_sz01 where id>3 limit 2;#这两句没有转化为mapreduce,hive一个也做了很多优化
hive> select id,name from t_sz01 where id>3 order by name;#避免了写mapreduce的过程
hive的数据存储

Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile(前面两种是hadoop原生自带的),ParquetFile(面向列的,有表头),RCFILE等)只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。

  • db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
  • table:在hdfs中表现所属db目录下一个文件夹
  • external table:外部表, 与table类似,不过其数据存放位置可以在任意指定路径
    普通表: 删除表后, hdfs上的文件都删了
    External外部表删除后, hdfs上的文件没有删除, 只是把文件删除了
  • partition:在hdfs中表现为table目录下的子目录
  • bucket:桶, 在hdfs中表现为同一个表目录下根据hash散列(使得join操作效率变高)之后的多个文件, 会根据不同的文件把数据放到不同的文件中
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容