KMP

简介

用于子字符串查找

首先是暴力查找

//主串 子串
public static int search(String text, String pattern) {
    int N = text.length();
    int M = pattern.length();
    for (int i = 0; i < N-M; i++) {
        int j;
        for (j = 0; j < M; j++) {
            if (text.charAt(i+j) != pattern.charAt(j))
                break;
        }
        if (j == M) return i;
    }
    return -1;
}

最坏时间复杂度为O(N*M)

KMP算法思想

暴力查找之所以慢是因为它每次的匹配都是从头开始,并且抛弃了之前已经算好的结果
KMP利用被匹配字符串的相同前缀和后缀,来减少回溯成本。
如下图


当匹配到i=4,j=4时,text的“a"不等于pattern的"c",在暴力算法中,会把j置零,重新开始比较。而KMP算法先不急把j置零,先尝试在之前匹配过的字符串中查找相同的无重叠的最大前缀子字符串和最大后缀子字符串。如“abab“,相同的无重叠的最大前缀子字符串和最大后缀子字符串为”ab“,记住,是“无重叠的”,字符串“ababa”的最大前缀子字符串和最大后缀子字符串是“a”而不是“aba”。

因为之前模式字符串的”abab“已经跟文本字符串匹配,所以文本字符串也存在”abab“,那么我们显然不需要再从头计算,把相同的最大前缀子字符串对齐最大后缀子字符串即可。如图所示。


我们可以在匹配前先算好模式字符串中从0到m(m在区间[0, M]内, M为模式字符串的长度)各个子字符串中的相同的无重叠的最大前缀子字符串和最大后缀子字符串,从而在匹配过程中直接使用,减少计算次数。
如字符串 “ababcab” 的从0到m各个子字符串中的相同的无重叠的最大前缀子字符串和最大后缀子字符串的长度k和索引j的关系

a ab aba abab ababc ababca ababcab
k 0 0 1 2 0 1 2
j -1 -1 0 1 -1 0 1

从上表的,j=k-1,因为在程序语言中,字符串的索引是从0开始的,所以减1,而j=-1,表示不存在相同的无重叠的最大前缀子字符串和最大后缀子字符串。最后用到的是j的值

计算模式字符串的next数组

/**
 * 计算模式字符串的next数组
 * @param pattern 模式字符串
 * @return next数组,next数组的值对应模式字符串中从0到m各个子字符串中的相同的无重叠的最大前缀子字符串和最大后缀子字符串
 */
private static int[] calNext(final String pattern) {
    int M = pattern.length();
    int[] next = new int[M];
    next[0] = -1; // 第一个子字符串只有一个字符,肯定不存在相同前后缀子字符串
    int k = -1; // k代表是相同的无重叠的最大前缀子字符串和最大后缀子字符串的长度减1,为-1表示不存在相同子串
    for (int i = 1; i < M; i++) {
        // 这里k也充当了低位索引,i是高位索引
        while(k > -1 && pattern.charAt(k+1) != pattern.charAt(i)) {
            k = next[k]; // 字符不相等,k需要回溯
        }
        if (pattern.charAt(k+1) == pattern.charAt(i)) {
            k++;
        }
        next[i] = k;
    }
    return next;
}

比较难理解的是最里面的循环while
k>-1,表示子串pattern[0, k]中已存在相同的无重叠的最大前缀子字符串和最大后缀子字符串,如果此时低位字符k+1跟高位字符i不匹配,k就需要回溯,把指针回退到模式字符串子串[0, k]中的相同的无重叠的最大前缀子字符串和最大后缀子字符串的长度,而这个值之前已经计算过,就是next[k]

KMP主函数

public static int search(final String text, final String pattern) {
    int[] next = calNext(pattern);
    int k = -1;
    int N = text.length();
    int M = pattern.length();
    for (int i = 0; i < N; i++) {
        while(k > -1 && pattern.charAt(k+1) != text.charAt(i)) {
            // 不匹配回溯找最大相同前后缀子字符串
            k = next[k];

            // 回溯方式讲解:
            // 假设:
            // text:      ...abac...
            // pattern:      abad...
            // i指向c时,k指向第二个a,此时k+1指向d不等于c,那么需要回溯
            // 此时我们需要找的是 text[i-1-k, i-1] 子串中最大相同前后缀子字符串,
            // 因为 pattern[0, k] == text[i-1-k, i-1]
            // 而 pattern[0, k] 的最大相同前后子字符串之前已经算过了,是next[k]
        }
        if (pattern.charAt(k+1) == text.charAt(i))
            k++;

        if (k == M - 1)
            return i - M + 1; // 已找到匹配字符
    }
    return -1; // 未找到匹配字符
}

KMP算法的时间复杂度为O(N+M)
参考文章
https://www.jianshu.com/p/f65cae7e00ef

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • 字符串匹配KMP算法详解 1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有...
    张晨辉Allen阅读 2,380评论 0 3
  • 数据结构与算法--KMP算法查找子字符串 部分内容和图片来自这三篇文章: 这篇文章、这篇文章、还有这篇他们写得非常...
    sunhaiyu阅读 1,722评论 1 21
  • 写在前面 字符串的一种基本操作是子字符串查找:给定一端长度为N的文本字符串text和一个长度为M(M<N)的模式字...
    安卓大叔阅读 5,763评论 3 11
  • 说明 KMP算法看懂了觉得特别简单,思路很简单,看不懂之前,查各种资料,看的稀里糊涂,即使网上最简单的解释,依然看...
    半世浮华一生留恋阅读 510评论 0 0
  • http://blog.csdn.net/shakespeare001/article/details/51381...
    111浪子111阅读 979评论 0 0