基于结构化随机森林的DME病灶分割--20170928小组汇报

Learning layer-specific edges for segmenting retinal layers with large deformations

作者:S. P. K. KARRI
来源:2016 BOE
摘要:本文提出了一种结构化学习算法用于提升传统图论方法的分割效果,该算法同时检测独立的层和对应的边缘。算法基本原理是首先通过结构化随机森林获得层次边缘的概率图,之后使用图论方法进行精分割。实验中的数据来自于杜克大学公开的10个DME患者的110张两位专家标定过的OCT图像。最终实现的平均分割误差为1.38个像素,而目前最好的算法分割误差是1.68个像素。

Induction

  • 视网膜中层次的厚度与一些眼科疾病有关,因此需要更加具有鲁棒性的图像分割算法。
  • 近些年来,图论算法,特别是动态规划算法,由于其良好的性能、较低的复杂度以及对噪声的鲁棒性而得到广泛应用。
  • 然而,当视网膜出现病变时,其层次结构发生了较大的变化,此时传统的分割算法的效果很不理想。由于病变结构多种多样,分割难度较大。为了解决这个问题,出现了很多基于学习的方法。
  • 随机森林作为一种传统的学习分类方法,由于其实现简单、计算复杂度低、不容易过拟合等有点而被广泛使用。然而原始的随机森林为单值分类方法,不能用于2D图像块的分类。为了将其引入二维空间,出现了结构化学习方法,如结构化的SVM、结构化的随机森林,这些方法可以用于图像分割及图像的边缘检测。本文提出的算法即是使用结构化随机森林作为学习算法,输入的图像块的特征,输出的对该图像块的预测,如下图:

image.png

structured random forests
随机森林由多颗决策树组成,多个决策树的结果通过一定的规则运算得到随机森林的结果。传统的随机森林只能够进行标签的分类,而结构化随机森林能够对2D的图像块进行分类。训练时使用的数据为:特征图像块、标签图像块以及对应的边缘图像块。

image.png

image.png

决策树构建的过程中使用基尼不纯度作为衡量标准,叶子节点上的图像块代表该路径对应的分类结果。
Method
本文方法流程图:

image.png
image.png
image.png

image-correction为图像归一化过程;
extracting the image intensity and gradient features:提取灰度特征、梯度特征以及HOG特征,考虑到图像可能发生尺度上的变化,提取特征时将图像缩小1/2。因此总的特征包括11个:原始尺度的灰度信息,两个尺度上的梯度信息、两个尺度4个方向上的HOG特征。
The ‘n’ layer selection process:选择某一层次的边界,生成该边界对应的Label image(BL)和contour image(BC):

image.png

guided sampling process:图像块提取过程;首先对BC进行膨胀,之后再膨胀后的白色区域位置对应的原始图像中选取3232的图像块,单个像素生成的特征图像块为323211,在训练时会将特征块展开为一维向量。然后按照这个规则,在Label image和contour image对应位置选取1616的图像块。

image.png

数据:来自杜克大学公开的DME数据集,包含10个DME患者的110张图像,其中每张图像含有两名专家标定的8条层次线。训练集为55张,测试集为55张。每个森林包含8课决策树。
实验分析
三个衡量指标:
Metric 1: Mean absolute difference between the predicted contour and the expert contour along the column实验结果与金标准之间的平均绝对误差
Metric 2: Mean absolute difference in layer widths层次厚度的平均绝对误差

image.png
image.png
image.png
image.png

注:AN:传统图论方法;AD:kernel-guided graph approach

分割结果图片:

image.png

image.png

未来方向

  1. 结构化学习时考虑相邻图片之间的信息
  2. 将层次分割与病变预测结合起来

不足之处
HoG依赖于梯度,而图像中由于血管阴影的存在导致的梯度信息缺失会影响结果,目前的结构化随机森林能够处理少于16个像素宽度的梯度信息丢失。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容