es-日志存储-Logstash 介绍

本文是elasticsearch官方文档logstash的翻译,你也可<a href="https://www.elastic.co/guide/en/logstash/current/index.html">查看原文</a>

注:Logstash意思是日志存储,下文中对本词使用英文。

Paste_Image.png

Logstash 介绍

Logstash is an open source data collection engine with real-time pipelining capabilities(功能). Logstash can dynamically unify(统一) data from disparate(不同的) sources and normalize the data into destinations(目的地) of your choice. Cleanse(净化) and democratize(大众化) all your data for diverse(不同的) advanced downstream(下游) analytics and visualization(形象化) use cases.

Logstash 是开源的具有实时输入数据能力的数据收集引擎。Logstash可以把来自不同的源的数据动态的写入你选择的目的地并对输入的数据进行规范化。根据需求进行分析和展示。

While Logstash originally(最初) drove innovation(创新) in log collection, its capabilities extend well beyond(超越) that use case. Any type of event can be enriched and transformed(转变) with a broad(宽的) array of input, filter, and output plugins, with many native codecs further(更好地) simplifying(简化) the ingestion(吸收) process. Logstash accelerates(加速) your insights(洞察力) by harnessing(利用) a greater volume and variety(多样) of data.

Logstash升级版本的时候,老版本对新版本的兼容新很好。事件的类型是一组input、filter、和output插件,所以可以很方便扩展,可以使用本地编码更好简化吸收日志的过程。

The Power of Logstash

The ingestion workhorse for Elasticsearch and more
Horizontally(水平) scalable(可扩展的) data processing pipeline with strong Elasticsearch and Kibana synergy(协同)

通过Elasticearch和kibana进行协同,实现数据处理的水平扩展

Pluggable pipeline architecture
Mix, match, and orchestrate different inputs, filters, and outputs to play in pipeline harmony

插件化管饱结构
混合,匹配和协调不同的 inputs, filters, and outputs让管道和谐而不发生冲突。

Community-extensible and developer-friendly plugin ecosystem
Over 200 plugins available, plus the flexibility of creating and contributing your own

社区可扩展和开发者友好的插件生态系统
超过200个插件可以使用,你也可以很快速创建和贡献你的插件

Paste_Image.png

Logstash Loves Data

Collect more, so you can know more. Logstash welcomes data of all shapes and sizes.

搜集更多,这样你就可以知道更多。Logstash可以存储各种各样的数据。

Logs and Metrics
Where it all started.

  • Handle all types of logging data
    • Easily ingest(摄取) a multitude(大批的) of web logs like Apache, and application logs like log4j for Java
    • Capture many other log formats like syslog, Windows event logs, networking and firewall logs, and more
  • Enjoy complementary(补充的) secure log forwarding capabilities with Filebeat
  • Collect metrics from Ganglia, collectd, NetFlow, JMX, and many other infrastructure(基础设施) and application platforms over TCP and UDP

日志和度量
这是一切开始的地方。

  • 处理很多类型的日志
  • 那些可以容易获取的<code>Apache</code>之类的web日志,应用日志如java的log4J
  • 其他的格式化的日志如<i>syslog,Windows event logs,网络和防火墙日志等等</i>
  • Filebeat转发来的安全日志。
  • Ganglia, collectd, NetFlow, JMX, 和一些其他的(基础设施) and 基于 TCP and UDP的应用平台

The Web
Unlock the World Wide Web.

  • Transform HTTP requests into events (blog)
  • Consume(消耗) from web service firehoses(消防带) like Twitter for social sentiment(情感) analysis
  • Webhook(网络连接) support for GitHub, HipChat, JIRA, and countless(无数的) other applications
  • Enables many Watcher alerting use cases
  • Create events by polling(投票) HTTP endpoints on demand (blog)
  • Universally(普遍) capture health, performance, metrics, and other types of data from web application interfaces
  • Perfect for scenarios where the control of polling is preferred over receiving

解锁万维网。

  • Http事件

Data Stores and Streams
Discover more value from the data you already own.

  • Better understand your data from any relational database or NoSQL store with a JDBC interface (blog)
  • Unify(统一) diverse(不同的) data streams from messaging queues like Apache Kafka (blog), RabbitMQ, Amazon SQS, and ZeroMQ

数据存储和数据流

Sensors and IoT
Explore an expansive breadth of other data.

  • In this age of technological advancement, the massive IoT world unleashes endless use cases through capturing and harnessing data from connected sensors.
  • Logstash is the common event collection backbone for ingestion of data shipped from mobile devices to intelligent homes, connected vehicles, healthcare sensors, and many other industry specific applications.
  • Watch as Logstash, in conjunction with the broader ELK stack, centralizes and enriches sensor data to gain deeper knowledge regarding a residential home.

Easily Enrich Everything

The better the data, the better the knowledge. Clean and transform your data during ingestion to gain near real-time insights immediately at index or output time. Logstash comes out-of-box with many aggregations and mutations along with pattern matching, geo mapping, and dynamic lookup capabilities.

  • Grok is the bread and butter of Logstash filters and is used ubiquitously to derive structure out of unstructured data. Enjoy a wealth of integrated patterns aimed to help quickly resolve web, systems, networking, and other types of event formats.
  • Expand your horizons by deciphering geo coordinates from IP addresses, normalizing datecomplexity, simplifying key-value pairs and CSV data, anonymizing sensitive information, and further enriching your data with local lookups or Elasticsearch queries.
  • Codecs are often used to ease the processing of common event structures like JSON and multilineevents.

Choose Your Stash

Route your data where it matters most. Unlock various downstream analytical and operational use cases by storing, analyzing, and taking action on your data.

Analysis
Elasticsearch
Data stores such as MongoDB and Riak

Archiving
HDFS
S3
Google Cloud Storage

Monitoring
Nagios
Ganglia
Zabbix
Graphite
Datadog
CloudWatch

Alerting
Watcher with Elasticsearch
Email
Pagerduty
HipChat
IRC
SNS

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容