层次聚类 Hierarchical Clustering

层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。创建聚类树有自下而上合并和自上而下分裂两种方法。

1. Bisecting K-Means二分k均值聚类算法(自上而下)

Bisecting k-means聚类算法,即二分k均值算法,它是k-means聚类算法的一个变体,主要是为了改进k-means算法随机选择初始质心的随机性造成聚类结果不确定性的问题,而Bisecting k-means算法受随机选择初始质心的影响比较小。

首先,我们考虑在欧几里德空间中,衡量簇的质量通常使用如下度量:误差平方和(Sum of the Squared Error,简称SSE),也就是要计算执行聚类分析后,对每个点都要计算一个误差值,即非质心点到最近的质心的距离。那么,既然每个非质心点都已经属于某个簇,也就是要计算每个非质心点到其所在簇的质心的距离,最后将这些距离值相加求和,作为SSE去评估一个聚类的质量如何。我们的最终目标是,使得最终的SSE能够最小,也就是一个最小化目标SSE的问题。在n维欧几里德空间,SSE形式化地定义,计算公式如下:

误差平方和(SSE)计算公式

Bisecting k-means聚类算法的基本思想是,通过引入局部二分试验,每次试验都通过二分具有最大SSE值的一个簇,二分这个簇以后得到的2个子簇,选择2个子簇的总SSE最小的划分方法,这样能够保证每次二分得到的2个簇是比较优的(也可能是最优的),也就是这2个簇的划分可能是局部最优的,取决于试验的次数。
Bisecting k-means聚类算法的具体执行过程,描述如下所示:

  • 初始时,将待聚类数据集D作为一个簇C0,即C={C0},输入参数为:二分试验次数m、k-means聚类的基本参数;
  • 取C中具有最大SSE的簇Cp,进行二分试验m次:调用k-means聚类算法,取k=2,将Cp分为2个簇:Ci1、Ci2,一共得到m个二分结果集合B={B1,B2,…,Bm},其中,Bi={Ci1,Ci2},这里Ci1和Ci2为每一次二分试验得到的2个簇;
  • 计算上一步二分结果集合B中,每一个划分方法得到的2个簇的总SSE值,选择具有最小总SSE的二分方法得到的结果:Bj={Cj1,Cj2},并将簇Cj1、Cj2加入到集合C,并将Cp从C中移除;
  • 重复步骤2和3,直到得到k个簇,即集合C中有k个簇。

同k-means算法一样,Bisecting k-means算法不适用于非球形簇的聚类,而且不同尺寸和密度的类型的簇,也不太适合。

2.Agglomerative Hierarchical Clustering,AHC 合成聚类算法(自下而上)

2.1 合成聚类合并算法

层次聚类的合并算法通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程。简单的说层次聚类的合并算法是通过计算每一个类别的数据点与所有数据点之间的距离来确定它们之间的相似性,距离越小,相似度越高。并将距离最近的两个数据点或类别进行组合,生成聚类树。

假设有N个待聚类的样本,对于层次聚类来说,基本步骤就是:

  • (初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度;
  • 寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了一个);
  • 重新计算新生成的这个类与各个旧类之间的相似度;
  • 重复2和3直到所有样本点都归为一类,结束。
合成聚类

整个聚类过程其实是建立了一棵树,在建立的过程中,可以通过在第二步上设置一个阈值,当最近的两个类的距离大于这个阈值,则认为迭代可以终止。另外关键的一步就是第三步,如何判断两个类之间的相似度有不少种方法。

2.2距离计算方法

两个点的相似通过欧式距离计算:

欧式距离计算公式

数据点与组合数据点间的距离计算方式:
将数据点B与数据点C进行组合后,重新计算各类别数据点间的距离矩阵。数据点间的距离计算方式与之前的方法一样。这里需要说明的是组合数据点(B,C)与其他数据点间的计算方法。当我们计算(B,C)到A的距离时,需要分别计算B到A和C到A的距离均值。

数据点与组合数据距离计算公式

两个组合数据点间的距离计算方式:
计算两个组合数据点间距离的方法有三种,分别为Single Linkage,Complete Linkage和Average Linkage。在开始计算之前,我们先来介绍下这三种计算方法以及各自的优缺点。

Single Linkage
Single Linkage的计算方法是将两个组合数据点中距离最近的两个数据点间的距离作为这两个组合数据点的距离。这种方法容易受到极端值的影响。两个很相似的组合数据点可能由于其中的某个极端的数据点距离较近而组合在一起。

Complete Linkage
Complete Linkage的计算方法与Single Linkage相反,将两个组合数据点中距离最远的两个数据点间的距离作为这两个组合数据点的距离。Complete Linkage的问题也与Single Linkage相反,两个不相似的组合数据点可能由于其中的极端值距离较远而无法组合在一起。

Average Linkage
Average Linkage的计算方法是计算两个组合数据点中的每个数据点与其他所有数据点的距离。将所有距离的均值作为两个组合数据点间的距离。这种方法计算量比较大,但结果比前两种方法更合理。
我们使用Average Linkage计算组合数据点间的距离。下面是计算组合数据点(A,F)到(B,C)的距离,这里分别计算了(A,F)和(B,C)两两间距离的均值。

这种聚类的方法描述起来比较简单,但是计算复杂度比较高,为了寻找距离最近/远和均值,都需要对所有的距离计算个遍,需要用到双重循环,每次迭代都只能合并两个子类,这是非常慢的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,165评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,503评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,295评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,589评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,439评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,342评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,749评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,397评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,700评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,740评论 2 313
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,523评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,364评论 3 314
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,755评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,024评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,297评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,721评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,918评论 2 336

推荐阅读更多精彩内容