ES-1

1.路由key

image.png

2.协同节点

(1)客户端选择一个node发送请求过去,这个node就是coordinating node(协调节点)
(2)coordinating node,对document进行路由,将请求转发给对应的node(有primary shard)
(3)实际的node上的primary shard处理请求,然后将数据同步到replica node
(4)coordinating node,如果发现primary node和所有replica node都搞定之后,就返回响应结果给客户端

3.quorum

(1)consistency,one(primary shard),all(all shard),quorum(default)

我们在发送任何一个增删改操作的时候,比如说put /index/type/id,都可以带上一个consistency参数,指明我们想要的写一致性是什么?
put /index/type/id?consistency=quorum

one:要求我们这个写操作,只要有一个primary shard是active活跃可用的,就可以执行
all:要求我们这个写操作,必须所有的primary shard和replica shard都是活跃的,才可以执行这个写操作
quorum:默认的值,要求所有的shard中,必须是大部分的shard都是活跃的,可用的,才可以执行这个写操作

(2)quorum机制,写之前必须确保大多数shard都可用,int( (primary + number_of_replicas) / 2 ) + 1,当number_of_replicas>1时才生效

quroum = int( (primary + number_of_replicas) / 2 ) + 1
举个例子,3个primary shard,number_of_replicas=1,总共有3 + 3 * 1 = 6个shard
quorum = int( (3 + 1) / 2 ) + 1 = 3
所以,要求6个shard中至少有3个shard是active状态的,才可以执行这个写操作

(3)如果节点数少于quorum数量,可能导致quorum不齐全,进而导致无法执行任何写操作

3个primary shard,replica=1,要求至少3个shard是active,3个shard按照之前学习的shard&replica机制,必须在不同的节点上,如果说只有1台机器的话,是不是有可能出现说,3个shard都没法分配齐全,此时就可能会出现写操作无法执行的情况

1个primary shard,replica=3,quorum=((1 + 3) / 2) + 1 = 3,要求1个primary shard + 3个replica shard = 4个shard,其中必须有3个shard是要处于active状态的。如果这个时候只有2台机器的话,会出现什么情况呢?

es提供了一种特殊的处理场景,就是说当number_of_replicas>1时才生效,因为假如说,你就一个primary shard,replica=1,此时就2个shard
(1 + 1 / 2) + 1 = 2,要求必须有2个shard是活跃的,但是可能就1个node,此时就1个shard是活跃的,如果你不特殊处理的话,导致我们的单节点集群就无法工作

(4)quorum不齐全时,wait,默认1分钟,timeout,100,30s

等待期间,期望活跃的shard数量可以增加,最后实在不行,就会timeout
我们其实可以在写操作的时候,加一个timeout参数,比如说put /index/type/id?timeout=30,这个就是说自己去设定quorum不齐全的时候,es的timeout时长,可以缩短,也可以增长

4.document查询原理

1、客户端发送请求到任意一个node,成为coordinate node
2、coordinate node对document进行路由,将请求转发到对应的node,此时会使用round-robin随机轮询算法,在primary shard以及其所有replica中随机选择一个,让读请求负载均衡
3、接收请求的node返回document给coordinate node
4、coordinate node返回document给客户端
5、特殊情况:document如果还在建立索引过程中,可能只有primary shard有,任何一个replica shard都没有,此时可能会导致无法读取到document,但是document完成索引建立之后,primary shard和replica shard就都有了

5.查询结果time out

1、我们如果发出一个搜索请求的话,会拿到一堆搜索结果,本节课,我们来讲解一下,这个搜索结果里的各种数据,都代表了什么含义
2、我们来讲解一下,搜索的timeout机制,底层的原理

GET /_search

{
  "took": 6,
  "timed_out": false,
  "_shards": {
    "total": 6,
    "successful": 6,
    "failed": 0
  },
  "hits": {
    "total": 10,
    "max_score": 1,
    "hits": [
      {
        "_index": ".kibana",
        "_type": "config",
        "_id": "5.2.0",
        "_score": 1,
        "_source": {
          "buildNum": 14695
        }
      }
    ]
  }
}

took:整个搜索请求花费了多少毫秒

hits.total:本次搜索,返回了几条结果
hits.max_score:本次搜索的所有结果中,最大的相关度分数是多少,每一条document对于search的相关度,越相关,_score分数越大,排位越靠前
hits.hits:默认查询前10条数据,完整数据,_score降序排序

shards:shards fail的条件(primary和replica全部挂掉),不影响其他shard。默认情况下来说,一个搜索请求,会打到一个index的所有primary shard上去,当然了,每个primary shard都可能会有一个或多个replic shard,所以请求也可以到primary shard的其中一个replica shard上去。

timeout:默认无timeout,latency平衡completeness,手动指定timeout,timeout查询执行机制

timeout=10ms,timeout=1s,timeout=1m
GET /_search?timeout=10m

5.deep paging(深度分页)底层

image.png

6.mapping

(1)往es里面直接插入数据,es会自动建立索引,同时建立type以及对应的mapping
(2)mapping中就自动定义了每个field的数据类型
(3)不同的数据类型(比如说text和date),可能有的是exact value,有的是full text
(4)exact value,在建立倒排索引的时候,分词的时候,是将整个值一起作为一个关键词建立到倒排索引中的;full text,会经历各种各样的处理,分词,normaliztion(时态转换,同义词转换,大小写转换),才会建立到倒排索引中
(5)同时呢,exact value和full text类型的field就决定了,在一个搜索过来的时候,对exact value field或者是full text field进行搜索的行为也是不一样的,会跟建立倒排索引的行为保持一致;比如说exact value搜索的时候,就是直接按照整个值进行匹配,full text query string,也会进行分词和normalization再去倒排索引中去搜索
(6)可以用es的dynamic mapping,让其自动建立mapping,包括自动设置数据类型;也可以提前手动创建index和type的mapping,自己对各个field进行设置,包括数据类型,包括索引行为,包括分词器,等等

mapping,就是index的type的元数据,每个type都有一个自己的mapping,决定了数据类型,建立倒排索引的行为,还有进行搜索的行为

7.mapping对应数据类型

1、核心的数据类型

string
byte,short,integer,long
float,double
boolean
date

2、dynamic mapping

true or false --> boolean
123 --> long
123.45 --> double
2017-01-01 --> date
"hello world" --> string/text

3、查看mapping

GET /index/_mapping/type

8.query和filter简单对比

PUT /company/employee/2

{
  "address": {
    "country": "china",
    "province": "jiangsu",
    "city": "nanjing"
  },
  "name": "tom",
  "age": 30,
  "join_date": "2016-01-01"
}

PUT /company/employee/3

{
  "address": {
    "country": "china",
    "province": "shanxi",
    "city": "xian"
  },
  "name": "marry",
  "age": 35,
  "join_date": "2015-01-01"
}

搜索请求:年龄必须大于等于30,同时join_date必须是2016-01-01

GET /company/employee/_search

{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "join_date": "2016-01-01"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 30
          }
        }
      }
    }
  }
}

2、filter与query对比大解密

filter,仅仅只是按照搜索条件过滤出需要的数据而已,不计算任何相关度分数,对相关度没有任何影响
query,会去计算每个document相对于搜索条件的相关度,并按照相关度进行排序

一般来说,如果你是在进行搜索,需要将最匹配搜索条件的数据先返回,那么用query;如果你只是要根据一些条件筛选出一部分数据,不关注其排序,那么用filter
除非是你的这些搜索条件,你希望越符合这些搜索条件的document越排在前面返回,那么这些搜索条件要放在query中;如果你不希望一些搜索条件来影响你的document排序,那么就放在filter中即可

3、filter与query性能

filter,不需要计算相关度分数,不需要按照相关度分数进行排序,同时还有内置的自动cache最常使用filter的数据
query,相反,要计算相关度分数,按照分数进行排序,而且无法cache结果

9.TF/IDF算法

1、算法介绍

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度

Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法

Term frequency:搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关

搜索请求:hello world

doc1:hello you, and world is very good
doc2:hello, how are you

Inverse document frequency:搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,就越不相关

搜索请求:hello world

doc1:hello, today is very good
doc2:hi world, how are you

比如说,在index中有1万条document,hello这个单词在所有的document中,一共出现了1000次;world这个单词在所有的document中,一共出现了100次

doc2更相关

Field-length norm:field长度,field越长,相关度越弱

搜索请求:hello world

doc1:{ "title": "hello article", "content": "babaaba 1万个单词" }
doc2:{ "title": "my article", "content": "blablabala 1万个单词,hi world" }

hello world在整个index中出现的次数是一样多的

doc1更相关,title field更短

10.倒排索引搜索,正排索引排序聚合

搜索的时候,要依靠倒排索引;排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values

在建立索引的时候,一方面会建立倒排索引,以供搜索用;一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用

doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高;如果内存不足够,os会将其写入磁盘上

11.query phase和fetch phase

1、query phase

(1)搜索请求发送到某一个coordinate node,构构建一个priority queue,长度以paging操作from和size为准,默认为10
(2)coordinate node将请求转发到所有shard,每个shard本地搜索,并构建一个本地的priority queue
(3)各个shard将自己的priority queue返回给coordinate node,并构建一个全局的priority queue

2、replica shard如何提升搜索吞吐量

一次请求要打到所有shard的一个replica/primary上去,如果每个shard都有多个replica,那么同时并发过来的搜索请求可以同时打到其他的replica上去

image.png

1、fetch phbase工作流程

(1)coordinate node构建完priority queue之后,就发送mget请求去所有shard上获取对应的document
(2)各个shard将document返回给coordinate node
(3)coordinate node将合并后的document结果返回给client客户端

2、一般搜索,如果不加from和size,就默认搜索前10条,按照_score排序

一般的,不设置from和size,默认取10条,按照score重大到小排序

12.边界搜索bouncing results问题

1、preference

决定了哪些shard会被用来执行搜索操作

_primary, _primary_first, _local, _only_node:xyz, _prefer_node:xyz, _shards:2,3

bouncing results问题,两个document排序,field值相同;不同的shard上,可能排序不同;每次请求轮询打到不同的replica shard上;每次页面上看到的搜索结果的排序都不一样。这就是bouncing result,也就是跳跃的结果。

搜索的时候,是轮询将搜索请求发送到每一个replica shard(primary shard),但是在不同的shard上,可能document的排序不同

解决方案就是将preference设置为一个字符串,比如说user_id,让每个user每次搜索的时候,都使用同一个replica shard去执行,就不会看到bouncing results了

2、timeout,已经讲解过原理了,主要就是限定在一定时间内,将部分获取到的数据直接返回,避免查询耗时过长

3、routing,document文档路由,_id路由,routing=user_id,这样的话可以让同一个user对应的数据到一个shard上去

4、search_type

default:query_then_fetch
dfs_query_then_fetch,可以提升revelance sort精准度

13.scroll

如果一次性要查出来比如10万条数据,那么性能会很差,此时一般会采取用scoll滚动查询,一批一批的查,直到所有数据都查询完处理完

使用scoll滚动搜索,可以先搜索一批数据,然后下次再搜索一批数据,以此类推,直到搜索出全部的数据来
scoll搜索会在第一次搜索的时候,保存一个当时的视图快照,之后只会基于该旧的视图快照提供数据搜索,如果这个期间数据变更,是不会让用户看到的
采用基于_doc进行排序的方式,性能较高
每次发送scroll请求,我们还需要指定一个scoll参数,指定一个时间窗口,每次搜索请求只要在这个时间窗口内能完成就可以了

GET /test_index/test_type/_search?scroll=1m
{
  "query": {
    "match_all": {}
  },
  "sort": [ "_doc" ],
  "size": 3
}

{
  "_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAACxeFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAALF8WNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAACxhFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYhY0b25zVFlWWlRqR3ZJajlfc3BXejJ3",
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 10,
    "max_score": null,
    "hits": [
      {
        "_index": "test_index",
        "_type": "test_type",
        "_id": "8",
        "_score": null,
        "_source": {
          "test_field": "test client 2"
        },
        "sort": [
          0
        ]
      },
      {
        "_index": "test_index",
        "_type": "test_type",
        "_id": "6",
        "_score": null,
        "_source": {
          "test_field": "tes test"
        },
        "sort": [
          0
        ]
      },
      {
        "_index": "test_index",
        "_type": "test_type",
        "_id": "AVp4RN0bhjxldOOnBxaE",
        "_score": null,
        "_source": {
          "test_content": "my test"
        },
        "sort": [
          0
        ]
      }
    ]
  }
}

获得的结果会有一个scoll_id,下一次再发送scoll请求的时候,必须带上这个scoll_id

GET /_search/scroll
{
    "scroll": "1m", 
    "scroll_id" : "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAACxeFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAALF8WNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAACxhFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYhY0b25zVFlWWlRqR3ZJajlfc3BXejJ3"
}

11,4,7
3,2,1
20

scoll,看起来挺像分页的,但是其实使用场景不一样。分页主要是用来一页一页搜索,给用户看的;scoll主要是用来一批一批检索数据,让系统进行处理的

14.动态mapping(定制dynamic策略)

1、定制dynamic策略

true:遇到陌生字段,就进行dynamic mapping
false:遇到陌生字段,就忽略
strict:遇到陌生字段,就报错

PUT /my_index
{
  "mappings": {
    "my_type": {
      "dynamic": "strict",
      "properties": {
        "title": {
          "type": "text"
        },
        "address": {
          "type": "object",
          "dynamic": "true"
        }
      }
    }
  }
}
PUT /my_index/my_type/1
{
  "title": "my article",
  "content": "this is my article",
  "address": {
    "province": "guangdong",
    "city": "guangzhou"
  }
}
{
  "error": {
    "root_cause": [
      {
        "type": "strict_dynamic_mapping_exception",
        "reason": "mapping set to strict, dynamic introduction of [content] within [my_type] is not allowed"
      }
    ],
    "type": "strict_dynamic_mapping_exception",
    "reason": "mapping set to strict, dynamic introduction of [content] within [my_type] is not allowed"
  },
  "status": 400
}

PUT /my_index/my_type/1
{
  "title": "my article",
  "address": {
    "province": "guangdong",
    "city": "guangzhou"
  }
}

GET /my_index/_mapping/my_type

{
  "my_index": {
    "mappings": {
      "my_type": {
        "dynamic": "strict",
        "properties": {
          "address": {
            "dynamic": "true",
            "properties": {
              "city": {
                "type": "text",
                "fields": {
                  "keyword": {
                    "type": "keyword",
                    "ignore_above": 256
                  }
                }
              },
              "province": {
                "type": "text",
                "fields": {
                  "keyword": {
                    "type": "keyword",
                    "ignore_above": 256
                  }
                }
              }
            }
          },
          "title": {
            "type": "text"
          }
        }
      }
    }
  }
}

2、定制dynamic mapping策略

(1)date_detection

默认会按照一定格式识别date,比如yyyy-MM-dd。但是如果某个field先过来一个2017-01-01的值,就会被自动dynamic mapping成date,后面如果再来一个"hello world"之类的值,就会报错。可以手动关闭某个type的date_detection,如果有需要,自己手动指定某个field为date类型。

PUT /my_index/_mapping/my_type
{
    "date_detection": false
}

(2)定制自己的dynamic mapping template(type level)


PUT /my_index
{
    "mappings": {
        "my_type": {
            "dynamic_templates": [
                { "en": {
                      "match":              "*_en", 
                      "match_mapping_type": "string",
                      "mapping": {
                          "type":           "string",
                          "analyzer":       "english"
                      }
                }}
            ]
}}}
PUT /my_index/my_type/1
{
  "title": "this is my first article"
}

PUT /my_index/my_type/2
{
  "title_en": "this is my first article"
}

title没有匹配到任何的dynamic模板,默认就是standard分词器,不会过滤停用词,is会进入倒排索引,用is来搜索是可以搜索到的
title_en匹配到了dynamic模板,就是english分词器,会过滤停用词,is这种停用词就会被过滤掉,用is来搜索就搜索不到了

(3)定制自己的default mapping template(index level)

PUT /my_index
{
    "mappings": {
        "_default_": {
            "_all": { "enabled":  false }
        },
        "blog": {
            "_all": { "enabled":  true  }
        }
    }
}

15.重建索引操作

1、重建索引

一个field的设置是不能被修改的,如果要修改一个Field,那么应该重新按照新的mapping,建立一个index,然后将数据批量查询出来,重新用bulk api写入index中

批量查询的时候,建议采用scroll api,并且采用多线程并发的方式来reindex数据,每次scoll就查询指定日期的一段数据,交给一个线程即可

(1)一开始,依靠dynamic mapping,插入数据,但是不小心有些数据是2017-01-01这种日期格式的,所以title这种field被自动映射为了date类型,实际上它应该是string类型的

PUT /my_index/my_type/3
{
  "title": "2017-01-03"
}

{
  "my_index": {
    "mappings": {
      "my_type": {
        "properties": {
          "title": {
            "type": "date"
          }
        }
      }
    }
  }
}

(2)当后期向索引中加入string类型的title值的时候,就会报错

PUT /my_index/my_type/4
{
  "title": "my first article"
}

{
  "error": {
    "root_cause": [
      {
        "type": "mapper_parsing_exception",
        "reason": "failed to parse [title]"
      }
    ],
    "type": "mapper_parsing_exception",
    "reason": "failed to parse [title]",
    "caused_by": {
      "type": "illegal_argument_exception",
      "reason": "Invalid format: \"my first article\""
    }
  },
  "status": 400
}

(3)如果此时想修改title的类型,是不可能的

PUT /my_index/_mapping/my_type
{
  "properties": {
    "title": {
      "type": "text"
    }
  }
}

{
  "error": {
    "root_cause": [
      {
        "type": "illegal_argument_exception",
        "reason": "mapper [title] of different type, current_type [date], merged_type [text]"
      }
    ],
    "type": "illegal_argument_exception",
    "reason": "mapper [title] of different type, current_type [date], merged_type [text]"
  },
  "status": 400
}

(4)此时,唯一的办法,就是进行reindex,也就是说,重新建立一个索引,将旧索引的数据查询出来,再导入新索引

(5)如果说旧索引的名字,是old_index,新索引的名字是new_index,终端java应用,已经在使用old_index在操作了,难道还要去停止java应用,修改使用的index为new_index,才重新启动java应用吗?这个过程中,就会导致java应用停机,可用性降低

(6)所以说,给java应用一个别名,这个别名是指向旧索引的,java应用先用着,java应用先用goods_index alias来操作,此时实际指向的是旧的my_index

PUT /my_index/_alias/goods_index

(7)新建一个index,调整其title的类型为string

PUT /my_index_new
{
  "mappings": {
    "my_type": {
      "properties": {
        "title": {
          "type": "text"
        }
      }
    }
  }
}

(8)使用scroll api将数据批量查询出来

GET /my_index/_search?scroll=1m
{
    "query": {
        "match_all": {}
    },
    "sort": ["_doc"],
    "size":  1
}

{
  "_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAADpAFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAA6QRY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAAOkIWNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAADpDFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAA6RBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3",
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": null,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": null,
        "_source": {
          "title": "2017-01-02"
        },
        "sort": [
          0
        ]
      }
    ]
  }
}

(9)采用bulk api将scoll查出来的一批数据,批量写入新索引

POST /_bulk
{ "index":  { "_index": "my_index_new", "_type": "my_type", "_id": "2" }}
{ "title":    "2017-01-02" }

(10)反复循环8~9,查询一批又一批的数据出来,采取bulk api将每一批数据批量写入新索引

(11)将goods_index alias切换到my_index_new上去,java应用会直接通过index别名使用新的索引中的数据,java应用程序不需要停机,零提交,高可用

POST /_aliases
{
    "actions": [
        { "remove": { "index": "my_index", "alias": "goods_index" }},
        { "add":    { "index": "my_index_new", "alias": "goods_index" }}
    ]
}

(12)直接通过goods_index别名来查询,是否ok

GET /goods_index/my_type/_search

2、基于alias对client透明切换index

PUT /my_index_v1/_alias/my_index

client对my_index进行操作

reindex操作,完成之后,切换v1到v2

POST /_aliases
{
    "actions": [
        { "remove": { "index": "my_index_v1", "alias": "my_index" }},
        { "add":    { "index": "my_index_v2", "alias": "my_index" }}
    ]
}

16-1.document CRUD原理-v1

(1)数据写入buffer
(2)commit point
(3)buffer中的数据写入新的index segment
(4)等待在os cache中的index segment被fsync强制刷到磁盘上
(5)新的index sgement被打开,供search使用
(6)buffer被清空

每次commit point时,会有一个.del文件,标记了哪些segment中的哪些document被标记为deleted了
搜索的时候,会依次查询所有的segment,从旧的到新的,比如被修改过的document,在旧的segment中,会标记为deleted,在新的segment中会有其新的数据

image.png

16-2.document CRUD -refresh

现有流程的问题,每次都必须等待fsync将segment刷入磁盘,才能将segment打开供search使用,这样的话,从一个document写入,到它可以被搜索,可能会超过1分钟!!!这就不是近实时的搜索了!!!主要瓶颈在于fsync实际发生磁盘IO写数据进磁盘,是很耗时的。

写入流程别改进如下:

(1)数据写入buffer
(2)每隔一定时间,buffer中的数据被写入segment文件,但是先写入os cache
(3)只要segment写入os cache,那就直接打开供search使用,不立即执行commit

数据写入os cache,并被打开供搜索的过程,叫做refresh,默认是每隔1秒refresh一次。也就是说,每隔一秒就会将buffer中的数据写入一个新的index segment file,先写入os cache中。所以,es是近实时的,数据写入到可以被搜索,默认是1秒。

POST /my_index/_refresh,可以手动refresh,一般不需要手动执行,没必要,让es自己搞就可以了

比如说,我们现在的时效性要求,比较低,只要求一条数据写入es,一分钟以后才让我们搜索到就可以了,那么就可以调整refresh interval

PUT /my_index
{
  "settings": {
    "refresh_interval": "30s" 
  }
}
image.png

16-3.ducument CRUD真正底层原理

(1)数据写入buffer缓冲和translog日志文件
(2)每隔一秒钟,buffer中的数据被写入新的segment file,并进入os cache,此时segment被打开并供search使用
(3)buffer被清空
(4)重复1~3,新的segment不断添加,buffer不断被清空,而translog中的数据不断累加
(5)当translog长度达到一定程度的时候,commit操作发生
(5-1)buffer中的所有数据写入一个新的segment,并写入os cache,打开供使用
(5-2)buffer被清空
(5-3)一个commit ponit被写入磁盘,标明了所有的index segment
(5-4)filesystem cache中的所有index segment file缓存数据,被fsync强行刷到磁盘上
(5-5)现有的translog被清空,创建一个新的translog

基于translog和commit point,如何进行数据恢复

fsync+清空translog,就是flush,默认每隔30分钟flush一次,或者当translog过大的时候,也会flush

POST /my_index/_flush,一般来说别手动flush,让它自动执行就可以了

translog,每隔5秒被fsync一次到磁盘上。在一次增删改操作之后,当fsync在primary shard和replica shard都成功之后,那次增删改操作才会成功

但是这种在一次增删改时强行fsync translog可能会导致部分操作比较耗时,也可以允许部分数据丢失,设置异步fsync translog

PUT /my_index/_settings
{
    "index.translog.durability": "async",
    "index.translog.sync_interval": "5s"
}
image.png

通过commit+point 与 translog数据恢复


image.png

17.后台批量merge segment

每秒一个segment file,文件过多,而且每次search都要搜索所有的segment,很耗时

默认会在后台执行segment merge操作,在merge的时候,被标记为deleted的document也会被彻底物理删除

每次merge操作的执行流程

(1)选择一些有相似大小的segment,merge成一个大的segment
(2)将新的segment flush到磁盘上去
(3)写一个新的commit point,包括了新的segment,并且排除旧的那些segment
(4)将新的segment打开供搜索
(5)将旧的segment删除

POST /my_index/_optimize?max_num_segments=1,尽量不要手动执行,让它自动默认执行就可以了


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容

  • 1 前言 1 大规模数据如何检索 当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度...
    MiniSoulBigBang阅读 1,289评论 0 5
  • 一、es基本组成 elasticsearch设计的理念就是分布式搜索引擎,底层其实还是基于lucene的,核心思想...
    Easy的幸福阅读 1,153评论 0 0
  • 个人专题目录[https://www.jianshu.com/u/2a55010e3a04] 2、高并发架构 2....
    Java及SpringBoot阅读 1,273评论 0 12
  • ES是谁? 一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎 Ps:Lucene是一套...
    老老老狼阅读 388评论 0 0
  • 分布式搜索引擎:把大量的索引数据拆散成多块,每台机器放一部分,然 后利用多台机器对分散之后的数据进行搜索,所有操作...
    雪飘千里阅读 1,071评论 0 2