DeepLearning - Part1 Week 2(1)

本文为吴恩达DeepLearning课程的学习笔记。

1. 逻辑回归
逻辑回归并不是一种回归算法,而是用来解决二分类问题的一种算法。
逻辑回归的表达式为:y=sigmoid(w^TX+b),其中sigmoid(z) = 1/(1+e^-z)。当sigmoid中的z很大时,则e^-z趋近于0,y约等于1。反之,当z很小时,e^-z趋近于无穷大,则y约等于0。逻辑回归需要训练的参数是wb

sigmoid

2.逻辑回归损失函数
Loss function可以用来衡量算法的运行情况。通过Loss function,我们可以计算预测值与真实值的差距。

Loss Function of Logistic Regression

Cost function 是将所有的Loss function取平均值,我们要做的就是训练得到参数
w
b
,使得Cost function最小化。
Cost function

3.梯度下降
使用梯度下降算法来训练参数wb。逻辑回归的Cost function是一个凸函数,所以逻辑回归最终都会得到最小值。参数wb的公式如下所示。其中α为学习率,在梯度下降里面表示每一步的步长。

GD

4.向量化
向量化可以避免显式的for循环,这里如果学过线性代数的话,很容易理解。将每一条数据合并为一个矩阵,通过矩阵之间的乘法便可以得到结果。


python代码
逻辑回归核心代码如下,如果使用逻辑回归处理图片分类,那么需要将(nn3)的图像转换为一维的平铺向量。

逻辑回归简单流程图


def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-1.0 * z))


def initialize_with_zeros(dim):
    w = np.zeros((dim, 1))
    b = 0

    assert (w.shape == (dim, 1))
    return w, b


def propagate(w, b, X, Y):  # calculate forward propagate and backward propagate , and calculate cost and gradient
    m = X.shape[1]
    A = sigmoid(np.dot(w.T, X) + b)
    cost = -(1.0 / m) * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))  # np.log means the log function in math
    cost = np.squeeze(cost)

    dw = 1.0 / m * (np.dot(X, (A - Y).T))
    db = 1.0 / m * np.sum(A - Y)
    grads = {"dw": dw,
             "db": db}
    return cost, grads


def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
    costs = []

    for i in range(num_iterations):
        cost, grads = propagate(w, b, X, Y)

        dw = grads["dw"]
        db = grads["db"]

        w = w - learning_rate * dw
        b = b - learning_rate * db
        if i % 100 == 0:
            costs.append(cost)

        if print_cost and i % 100 == 0:
            print("cost after iteration %i:%f" % (i, cost))

    params = {"w": w,
              "b": b}
    grads = {"dw": dw,
             "db": db}

    return params, grads, costs


def predict(w, b, X):
    m = X.shape[1]
    y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)

    A = sigmoid(np.dot(w.T, X) + b)

    for i in range(A.shape[1]):
        if A[0, i] > 0.5:
            y_prediction[0, i] = 1
        else:
            y_prediction[0, i] = 0

    return y_prediction


def model(train_x, train_y, test_x, test_y, num_iterations=2000, learning_rate=0.5, print_cost=False):
    w, b = initialize_with_zeros(train_x.shape[0])
    params, grads, costs = optimize(w, b, train_x, train_y, num_iterations, learning_rate, print_cost)
    w = params["w"]
    b = params["b"]

    Y_prediction_test = predict(w, b, test_x)
    Y_prediction_train = predict(w, b, train_x)

    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - train_y)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - test_y)) * 100))

    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train": Y_prediction_train,
         "w": w,
         "b": b,
         "learning_rate": learning_rate,
         "num_iterations": num_iterations}

    return d


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343