一,利用导数求函数的单调性
- 导数与函数单调性的关系
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-1.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-2.png" width="500" />
- 用导数求函数单调性的步骤
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-3.png" width="500" />
- 举例
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-4.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-5.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-6.png" width="500" />
- 应用单调性进行证明
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-7.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-8.png" width="500" />
二,极值定理
- 极大值:函数在x0某一个邻域 左侧单调递增(左导数>0),右侧单调递减(右导数<0),x0为极大值点;
- 极小值:函数在x0某一个邻域 左侧单调递减(左导数<0),右侧单调递增(右导数>0),x0为极小值点;
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-9.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-10.png" width="500" />
- 求函数极值点的方法一:一阶导数法
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-11.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-12.png" width="500" />
- 求函数极值点的方法二:二阶导数法, 注意是在驻点的基础上求二阶导数
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-13.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-14.png" width="500" />
- 尽量使用方法二求极值,但是如果如果使用方法二极值不存在,那么就要使用第一种方法继续求:
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-15.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-16.png" width="500" />
三、函数的最值
- 函数在给定区间内的最大值和最小值求法
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-17.png" width="500" />
- 函数的可能的最值点可能是 驻点(函数的导数=0的点)或导数不存在(使导数无意义的点) 或 函数两个端点 其中的一点;
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-18.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-19.png" width="500" />
上图中的最值点就是驻点,使导数不存在的点不存在;
- 实际问题的最值就是极值;
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-20.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-21.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-22.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-23.png" width="500" />
四、曲线的凸凹性
- 定义
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-24png" width="500" />
- 凹凸型的判定
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-25png" width="500" />
- 3. 函数曲线拐点的判定
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-26png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-27png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-28png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-29png" width="500" />
四、曲线的渐进线, 水平渐进线用极限求,铅直渐进线是使得函数分母趋向于0,分子不为0的点求;
- 水平渐进线
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-30.png" width="500" />
- 铅直渐进线
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-31.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/math-daoshu-user-32.png" width="500" />