jstorm api

Map conf = new HashMp();
//topology所有自定义的配置均放入这个Map

TopologyBuilder builder = new TopologyBuilder();
//创建topology的生成器

int spoutParal = get("spout.parallel", 1);
//获取spout的并发设置

SpoutDeclarer spout = builder.setSpout(SequenceTopologyDef.SEQUENCE_SPOUT_NAME,
                new SequenceSpout(), spoutParal);
//创建Spout, 其中new SequenceSpout() 为真正spout对象,SequenceTopologyDef.SEQUENCE_SPOUT_NAME 为spout的名字,注意名字中不要含有空格

int boltParal = get("bolt.parallel", 1);
//获取bolt的并发设置

BoltDeclarer totalBolt = builder.setBolt(SequenceTopologyDef.TOTAL_BOLT_NAME, new TotalCount(),
                boltParal).shuffleGrouping(SequenceTopologyDef.SEQUENCE_SPOUT_NAME);
//创建bolt, SequenceTopologyDef.TOTAL_BOLT_NAME 为bolt名字,TotalCount 为bolt对象,boltParal为bolt并发数,
//shuffleGrouping(SequenceTopologyDef.SEQUENCE_SPOUT_NAME), 
//表示接收SequenceTopologyDef.SEQUENCE_SPOUT_NAME的数据,并且以shuffle方式,
//即每个spout随机轮询发送tuple到下一级bolt中

int ackerParal = get("acker.parallel", 1);
Config.setNumAckers(conf, ackerParal);
//设置表示acker的并发数

int workerNum = get("worker.num", 10);
conf.put(Config.TOPOLOGY_WORKERS, workerNum);
//表示整个topology将使用几个worker

conf.put(Config.STORM_CLUSTER_MODE, "distributed");
//设置topolog模式为分布式,这样topology就可以放到JStorm集群上运行

StormSubmitter.submitTopology(streamName, conf,
                builder.createTopology());
//提交topology

IRichSpout
IRichSpout 为最简单的Spout接口

IRichSpout{

    @Override
    public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
    }

    @Override
    public void close() {
    }

    @Override
    public void activate() {
    }

    @Override
    public void deactivate() {
    }

    @Override
    public void nextTuple() {
    }

    @Override
    public void ack(Object msgId) {
    }

    @Override
    public void fail(Object msgId) {
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
    }

    @Override
    public Map<String, Object> getComponentConfiguration() {
        return null;
    }

spout对象必须是继承Serializable, 因此要求spout内所有数据结构必须是可序列化的
spout可以有构造函数,但构造函数只执行一次,是在提交任务时,创建spout对象,因此在task分配到具体worker之前的初始化工作可以在此处完成,一旦完成,初始化的内容将携带到每一个task内(因为提交任务时将spout序列化到文件中去,在worker起来时再将spout从文件中反序列化出来)。
open是当task起来后执行的初始化动作
close是当task被shutdown后执行的动作
activate是当task被激活时,触发的动作
deactivate 是task被deactive时,触发的动作
nextTuple 是spout实现核心, nextuple完成自己的逻辑,即每一次取消息后,用collector 将消息emit出去。
ack, 当spout收到一条ack消息时,触发的动作,详情可以参考 ack机制
fail, 当spout收到一条fail消息时,触发的动作,详情可以参考 ack机制
declareOutputFields, 定义spout发送数据,每个字段的含义
getComponentConfiguration 获取本spout的component 配置

Bolt

IRichBolt {

    @Override
    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
    }

    @Override
    public void execute(Tuple input) {
    }

    @Override
    public void cleanup() {
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
    }

    @Override
    public Map<String, Object> getComponentConfiguration() {
        return null;
    }

}

其中注意:
bolt对象必须是继承Serializable, 因此要求spout内所有数据结构必须是可序列化的
bolt可以有构造函数,但构造函数只执行一次,是在提交任务时,创建bolt对象,因此在task分配到具体worker之前的初始化工作可以在此处完成,一旦完成,初始化的内容将携带到每一个task内(因为提交任务时将bolt序列化到文件中去,在worker起来时再将bolt从文件中反序列化出来)。
prepare 是当task起来后执行的初始化动作
cleanup 是当task被shutdown后执行的动作
execute 是bolt实现核心, 完成自己的逻辑,即接受每一次取消息后,处理完,有可能用collector 将产生的新消息emit出去。 ** 在executor中,当程序处理一条消息时,需要执行collector.ack, 详情可以参考 ack机制 ** 在executor中,当程序无法处理一条消息时或出错时,需要执行collector.fail ,详情可以参考 ack机制
declareOutputFields, 定义bolt发送数据,每个字段的含义
getComponentConfiguration 获取本bolt的component 配置

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容

  • Date: Nov 17-24, 2017 1. 目的 积累Storm为主的流式大数据处理平台对实时数据处理的相关...
    一只很努力爬树的猫阅读 2,158评论 0 4
  • 1.api介绍 生成Topology IRichSpoutIRichSpout 为最简单的Spout接口 其中注意...
    lmem阅读 2,895评论 0 0
  • 这是一个JStorm使用教程,不包含环境搭建教程,直接在公司现有集群上跑任务,关于JStorm集群环境搭建,后续研...
    Coselding阅读 6,298评论 1 9
  • Clojure实战(5):Storm实时计算框架 | Ji ZHANG's Bloghttp://shzhangj...
    葡萄喃喃呓语阅读 1,265评论 0 2
  • 感恩父母养育了我教我学走路教我学说话!感恩父母给我机会学习文化增长智慧!感恩父母教会我诚实守信热心助人!感恩老师一...
    T上善若水阅读 206评论 0 0