[DB]PostgreSQL 与 MySQL 相比,优势何在?

PostgreSQL 与 MySQL 相比,优势何在? - 数据库 - 知乎
https://www.zhihu.com/question/20010554
Pg 没有 MySQL 的各种坑

MySQL 的各种 text 字段有不同的限制, 要手动区分 small text, middle text, large text... Pg 没有这个限制, text 能支持各种大小.

按照 SQL 标准, 做 null 判断不能用 = null, 只能用 is null
the result of any arithmetic comparison with NULL is also NULL
但 pg 可以设置 transform_null_equals 把 = null 翻译成 is null 避免踩坑

不少人应该遇到过 MySQL 里需要 utf8mb4 才能显示 emoji 的坑, Pg 就没这个坑.

MySQL 的事务隔离级别 repeatable read 并不能阻止常见的并发更新, 得加锁才可以, 但悲观锁会影响性能, 手动实现乐观锁又复杂. 而 Pg 的列里有隐藏的乐观锁 version 字段, 默认的 repeatable read 级别就能保证并发更新的正确性, 并且又有乐观锁的性能. 附带一个各数据库对隔离级别的行为差异比较调查: http://www.cs.umb.edu/~poneil/iso.pdf

MySQL 不支持多个表从同一个序列中取 id, 而 Pg 可以.

MySQL 不支持 OVER 子句, 而 Pg 支持. OVER 子句能简单的解决 "每组取 top 5" 的这类问题.

几乎任何数据库的子查询 (subquery) 性能都比 MySQL 好.

更多的坑:
http://blog.ionelmc.ro/2014/12/28/terrible-choices-mysql/

不少人踩完坑了, 以为换个数据库还得踩一次, 所以很抗拒, 事实上不是!!!

Pg 不仅仅是 SQL 数据库

它可以存储 array 和 json, 可以在 array 和 json 上建索引, 甚至还能用表达式索引. 为了实现文档数据库的功能, 设计了 jsonb 的存储结构. 有人会说为什么不用 Mongodb 的 BSON 呢? Pg 的开发团队曾经考虑过, 但是他们看到 BSON 把 ["a", "b", "c"] 存成 {0: "a", 1: "b", 2: "c"} 的时候就决定要重新做一个 jsonb 了... 现在 jsonb 的性能已经优于 BSON.

现在往前端偏移的开发环境里, 用 Pg + PostgREST 直接生成后端 API 是非常快速高效的办法:
begriffs/postgrest · GitHub
postgREST 的性能非常强悍, 一个原因就是 Pg 可以直接组织返回 json 的结果.

它支持服务器端脚本: TCL, Python, R, Perl, Ruby, MRuby ... 自带 map-reduce 了.

它有地理信息处理扩展 (GIS 扩展不仅限于真实世界, 游戏里的地形什么的也可以), 可以用 Pg 搭寻路服务器和地图服务器:
PostGIS — Spatial and Geographic Objects for PostgreSQL

它自带全文搜索功能 (不用费劲再装一个 elasticsearch 咯):
Full text search in milliseconds with PostgreSQL 不过一些语言相关的支持还不太完善, 有个 bamboo 插件用调教过的 mecab 做中文分词, 如果要求比较高, 还是自己分了词再存到 tsvector 比较好.

它支持 trigram 索引.
trigram 索引可以帮助改进全文搜索的结果: PostgreSQL: Documentation: 9.3: pg_trgm
trigram 还可以实现高效的正则搜索 (原理参考 https://swtch.com/~rsc/regexp/regexp4.html )

MySQL 处理树状回复的设计会很复杂, 而且需要写很多代码, 而 Pg 可以高效处理树结构:
Scaling Threaded Comments on Django at Disqus
http://www.slideshare.net/quipo/trees-in-the-database-advanced-data-structures

它可以高效处理图结构, 轻松实现 "朋友的朋友的朋友" 这种功能:
http://www.slideshare.net/quipo/rdbms-in-the-social-networks-age

它可以把 70 种外部数据源 (包括 Mysql, Oracle, CSV, hadoop ...) 当成自己数据库中的表来查询:
Foreign data wrappers

心动不如行动

Converting MySQL to PostgreSQL

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容