Python3.0之后加入新特性Decorators,以@为标记修饰function和class。有点类似c++的宏和java的注解。Decorators用以修饰约束function和class,分为带参数和不带参数,影响原有输出,例如类静态函数我们要表达的时候需要函数前面加上修饰@staticmethod或@classmethod,为什么这样做呢?下面用简单的例子来看一下,具体内容可以查看:官方解释
不带参数的单一使用
def spamrun(fn):
def sayspam(*args):
print("spam,spam,spam")
fn(*args)
return sayspam
@spamrun
def useful(a,b):
print(a*b)
if __name__ == "__main__"
useful(2,5)
运行结果
spam,spam,spam
10
函数useful本身应该只是打印10
,可是为什么最后的结果是这样的呢,其实我们可以简单的把这个代码理解为
def spamrun(fn):
def sayspam(*args):
print("spam,spam,spam")
fn(*args)
return sayspam
def useful(a,b):
print(a*b)
if __name__ == "__main__"
useful = spamrun(useful)
useful(a,b)
不带参数的多次使用
def spamrun(fn):
def sayspam(*args):
print("spam,spam,spam")
fn(*args)
return sayspam
def spamrun1(fn):
def sayspam1(*args):
print("spam1,spam1,spam1")
fn(*args)
return sayspam1
@spamrun
@spamrun1
def useful(a,b):
print(a*b)
if __name__ == "__main__"
useful(2,5)
运行结果
spam,spam,spam
spam1,spam1,spam1
10
这个代码理解为
if __name__ == "__main__"
useful = spamrun1(spamrun(useful))
useful(a,b)
带参数的单次使用
def attrs(**kwds):
def decorate(f):
for k in kwds:
setattr(f, k, kwds[k])
return f
return decorate
@attrs(versionadded="2.2",
author="Guido van Rossum")
def mymethod(f):
print(getattr(mymethod,'versionadded',0))
print(getattr(mymethod,'author',0))
print(f)
if __name__ == "__main__"
mymethod(2)
运行结果
2.2
Guido van Rossum
2
这个代码理解为
if __name__ == "__main__"
mymethod = attrs(versionadded="2.2",
author="Guido van Rossum).(mymethod)
mymethod(2)
带参数的多次使用
这次我们来看一个比较实际的例子,检查我们函数的输入输出是否符合我们的标准,比如我们希望的输入是(int,(int,float))输出是(int,float),这个例子在官网里有,但是在3.6版本中使用有些问题,这里进行了一些改动,如果要进一步了解可以看下functionTool。
def accepts(*types):
def check_accepts(f):
def new_f(*args, **kwds):
assert len(types) == (len(args) + len(kwds)), \
"args cnt %d does not match %d" % (len(args) + len(kwds), len(types))
for (a, t) in zip(args, types):
assert isinstance(a, t), \
"arg %r does not match %s" % (a, t)
return f(*args, **kwds)
update_wrapper(new_f, f)
return new_f
return check_accepts
def returns(rtype):
def check_returns(f):
def new_f(*args, **kwds):
result = f(*args, **kwds)
assert isinstance(result, rtype), \
"return value %r does not match %s" % (result, rtype)
return result
update_wrapper(new_f, f)
return new_f
return check_returns
@accepts(int, (int, float))
@returns((int, float))
def func(arg1, arg2):
return arg1 * arg2
if __name__ == "__main__"
a = func(1, 'b')
print(a)
这里故意输入了错误的参数,所以运行结果将我们的断言打印了出来
AssertionError: arg 'b' does not match (<class 'int'>, <class 'float'>)
这个代码理解为
if __name__ == "__main__"
func = accepts(int, (int, float)).(accepts((int, float)).(mymethod))
a = func(1, 'b')
print(a)
说到这里,大家不难看出其实我们可以使用Decorators做很多工作,简化代码,使逻辑更清晰等。还有更多的用法等着大家自己去挖掘了,这里只简单的介绍了针对函数的用法,其实还可以针对class使用,具体的大家自己看看官方介绍,结合这篇文档应该就不难理解了。