机器学习之朴素贝叶斯

1.贝叶斯原理

朴素贝叶斯分类(Naive Bayesian,NB)源于贝叶斯理论,是一类基于概率的分类器,其基本思想:假设样本属性之间相互独立,对于给定的待分类项,求解在此项出现的情况下其他各个类别出现的概率。

朴素贝叶斯分类实现的三阶段

第一阶段,准备工作。

根据具体情况确定特征属性,并对每一特征属性进行划分,然后人工对一些待分类项进行分类,形成训练样本集合。

这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。唯一需要人工处理的阶段,质量要求较高。

第二阶段,分类器训练阶段(生成分类器)。

计算每个类别在训练样本中出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。

其输入是特征属性和训练样本,输出是分类器。

第三阶段,应用阶段。

使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。

2.R语言贝叶斯网络实现

caret中train函数

e1071包中的naiveBayes函数

klaR包中的NavieBayes函数

2.1数据准备

我们将在Rstudio中使用这三种朴素贝叶斯函数对威斯康星州乳腺癌数据集进行分类。

#设置路径

setwd("F:\360MoveData\Users\Administrator.PC-201704251340\Desktop\机器学习课程\决策树")

#读入数据

breast<-read.csv("breast dataset.csv")

#设置class为分类变量

df <- breast[-1]#删除第一列ID

df$class <- factor(df$class, levels=c(2,4),

labels=c("benign", "malignant"))

#将数据集分为训练集和验证集

set.seed(1234)

train <- sample(nrow(df), 0.7*nrow(df))

df.train <- df[train,]

df.validate <- df[-train,]

table(df.train$class)

table(df.validate$class)

2.2 e1071包中naiveBayes( )函数

naiveBayes(formula, data, laplace = 0, ..., subset, na.action = na.pass)

·formula:类似一般线性回归表达式,不含常数项。

data:需要分析的训练数据对象。

laplace:拉普拉斯估计值,默认为0。

subset:抽取要分析的训练数据子集。

na.action:缺失值的处理方法。默认情况下不将缺失值纳入模型计算,如果设定为na.omit则会删除缺失值进行计算。

###e1071包中的naiveBayes函数

library(e1071)

set.seed(1234)

fit1 <- naiveBayes(class~., data=df.train)

fit1

fit1.pred <- predict(fit1, na.omit(df.validate))

fit1.perf <- table(na.omit(df.validate)$class, 8

fit1.pred, dnn=c("Actual", "Predicted"))

fit1.perf

通过朴素贝叶斯分类得到96.19%的准确率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容