第三节 计算权重平滑平均价

本节介绍如何使用收盘价的SMA价格的策略

from pyalgotrade import strategy
from pyalgotrade.barfeed import yahoofeed
from pyalgotrade.technical import ma


class MyStrategy(strategy.BacktestingStrategy):
    def __init__(self, feed, instrument):
        super(MyStrategy, self).__init__(feed)
        # We want a 15 period SMA over the closing prices.
        self.__sma = ma.SMA(feed[instrument].getCloseDataSeries(), 15)
        self.__instrument = instrument

    def onBars(self, bars):
        bar = bars[self.__instrument]
        self.info("%s %s" % (bar.getClose(), self.__sma[-1]))

# Load the yahoo feed from the CSV file
feed = yahoofeed.Feed()
feed.addBarsFromCSV("orcl", "orcl-2000.csv")

# Evaluate the strategy with the feed's bars.
myStrategy = MyStrategy(feed, "orcl")
myStrategy.run()

这与前面的例子非常相似,只是:

  • 用收盘价格数据系列中初始化SMA过滤器。
  • 打印当前的SMA值以及收盘价。
    如果您运行脚本,您应该看到收盘价格和相应的SMA值,但在这种情况下,前14个SMA值为空。那是因为我们需要至少15个值来求取SMA:
2000-01-03 00:00:00 strategy [INFO] 118.12 None
2000-01-04 00:00:00 strategy [INFO] 107.69 None
2000-01-05 00:00:00 strategy [INFO] 102.0 None
2000-01-06 00:00:00 strategy [INFO] 96.0 None
2000-01-07 00:00:00 strategy [INFO] 103.37 None
2000-01-10 00:00:00 strategy [INFO] 115.75 None
2000-01-11 00:00:00 strategy [INFO] 112.37 None
2000-01-12 00:00:00 strategy [INFO] 105.62 None
2000-01-13 00:00:00 strategy [INFO] 105.06 None
2000-01-14 00:00:00 strategy [INFO] 106.81 None
2000-01-18 00:00:00 strategy [INFO] 111.25 None
2000-01-19 00:00:00 strategy [INFO] 57.13 None
2000-01-20 00:00:00 strategy [INFO] 59.25 None
2000-01-21 00:00:00 strategy [INFO] 59.69 None
2000-01-24 00:00:00 strategy [INFO] 54.19 94.2866666667
2000-01-25 00:00:00 strategy [INFO] 56.44 90.1746666667
.
.
.
2000-12-27 00:00:00 strategy [INFO] 30.69 29.9866666667
2000-12-28 00:00:00 strategy [INFO] 31.06 30.0446666667
2000-12-29 00:00:00 strategy [INFO] 29.06 30.0946666667
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容