6进程的描述和进程的创建

安大大 + 原创作品转载请注明出处 + 《Linux操作系统分析》MOOC课程

进程控制块PCB——task_struct

为了管理进程,内核必须对每个进程进行清晰的描述,进程描述符提供了内核所需了解的进程信息。


进程的描述

操作系统的三大功能:进程管理,内存管理和文件系统。最核心的是进程管理。

进程描述符 task_struct数据结构

理解部分在代码注释中

struct task_struct {
    volatile long state;    /*运行状态 -1 unrunnable, 0 runnable, >0 stopped */
    void *stack;    //指定进程的内核堆栈 
    atomic_t usage;
    unsigned int flags; /* 每个进程的标识符  per process flags, defined below */
    unsigned int ptrace;

#ifdef CONFIG_SMP
    //条件编译,多处理器用 
    struct llist_node wake_entry;
    int on_cpu;
    struct task_struct *last_wakee;
    unsigned long wakee_flips;
    unsigned long wakee_flip_decay_ts;

    int wake_cpu;
#endif
    //下边一段是与优先级调度相关 ,在不同的环境下不同的调度方式和标识 
    int on_rq;  //运行队列run queue 

    int prio, static_prio, normal_prio;
    unsigned int rt_priority;
    const struct sched_class *sched_class;
    struct sched_entity se;
    struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
    struct task_group *sched_task_group;
#endif
    struct sched_dl_entity dl;

#ifdef CONFIG_PREEMPT_NOTIFIERS
    /* list of struct preempt_notifier: */
    struct hlist_head preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
    unsigned int btrace_seq;
#endif

    unsigned int policy;
    int nr_cpus_allowed;
    cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
    int rcu_read_lock_nesting;
    union rcu_special rcu_read_unlock_special;
    struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU
    struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
    unsigned long rcu_tasks_nvcsw;
    bool rcu_tasks_holdout;
    struct list_head rcu_tasks_holdout_list;
    int rcu_tasks_idle_cpu;
#endif /* #ifdef CONFIG_TASKS_RCU */

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
    struct sched_info sched_info;
#endif

    struct list_head tasks; //进程的链表,当前所有的进程都用链表连起来,是一个双向循环链表 
#ifdef CONFIG_SMP
    struct plist_node pushable_tasks;
    struct rb_node pushable_dl_tasks;
#endif

    struct mm_struct *mm, *active_mm;//和内存管理,进程的地址空间相关,每个进程的代码段,数据段都和这个相关 
#ifdef CONFIG_COMPAT_BRK
    unsigned brk_randomized:1;
#endif
    /* per-thread vma caching */
    u32 vmacache_seqnum;
    struct vm_area_struct *vmacache[VMACACHE_SIZE];
#if defined(SPLIT_RSS_COUNTING)
    struct task_rss_stat    rss_stat;
#endif
/* task state 任务的状态*/
    int exit_state;
    int exit_code, exit_signal;
    int pdeath_signal;  /*  The signal sent when the parent dies  */
    unsigned int jobctl;    /* JOBCTL_*, siglock protected */

    /* Used for emulating ABI behavior of previous Linux versions */
    unsigned int personality;

    unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
                 * execve */
    unsigned in_iowait:1;

    /* Revert to default priority/policy when forking */
    unsigned sched_reset_on_fork:1;
    unsigned sched_contributes_to_load:1;

    unsigned long atomic_flags; /* Flags needing atomic access. */

    pid_t pid;  //进程的pid,来标识某一个进程 
    pid_t tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
    /* Canary value for the -fstack-protector gcc feature */
    unsigned long stack_canary;
#endif
    /* 下边是进程的父子关系管理,都是通过双向链表链接的 
     * pointers to (original) parent process, youngest child, younger sibling,
     * older sibling, respectively.  (p->father can be replaced with
     * p->real_parent->pid)
     */
    struct task_struct __rcu *real_parent; /* real parent process */
    struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
    /*
     * children/sibling forms the list of my natural children
     */
    struct list_head children;  /* list of my children */
    struct list_head sibling;   /* linkage in my parent's children list */
    struct task_struct *group_leader;   /* threadgroup leader */

    /*
     * ptraced is the list of tasks this task is using ptrace on.
     * This includes both natural children and PTRACE_ATTACH targets.
     * p->ptrace_entry is p's link on the p->parent->ptraced list.
     */
    struct list_head ptraced;   //调试用 
    struct list_head ptrace_entry;

    /* PID/PID hash table linkage. */
    struct pid_link pids[PIDTYPE_MAX];  //pid的哈希表,用来方便查找 
    struct list_head thread_group;
    struct list_head thread_node;

    struct completion *vfork_done;      /* for vfork() */
    int __user *set_child_tid;      /* CLONE_CHILD_SETTID */
    int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */
 
    cputime_t utime, stime, utimescaled, stimescaled;   //下边是和时间相关的代码
    cputime_t gtime;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
    struct cputime prev_cputime;
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    seqlock_t vtime_seqlock;
    unsigned long long vtime_snap;
    enum {
        VTIME_SLEEPING = 0,
        VTIME_USER,
        VTIME_SYS,
    } vtime_snap_whence;
#endif
    unsigned long nvcsw, nivcsw; /* context switch counts */
    u64 start_time;     /* monotonic time in nsec */
    u64 real_start_time;    /* boot based time in nsec */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
    unsigned long min_flt, maj_flt;

    struct task_cputime cputime_expires;
    struct list_head cpu_timers[3];

/* process credentials */
    const struct cred __rcu *real_cred; /* objective and real subjective task
                     * credentials (COW) */
    const struct cred __rcu *cred;  /* effective (overridable) subjective task
                     * credentials (COW) */
    char comm[TASK_COMM_LEN]; /* executable name excluding path
                     - access with [gs]et_task_comm (which lock
                       it with task_lock())
                     - initialized normally by setup_new_exec */
/* file system info */
    int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
    struct sysv_sem sysvsem;
    struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
    unsigned long last_switch_count;
#endif
/* CPU-specific state of this task 和CPU相关的状态,进程上下文切换时起着关键作用*/
    struct thread_struct thread;
/* filesystem information 文件系统相关的数据结构*/
    struct fs_struct *fs;
/* open file information 打开的文件描述符列表*/
    struct files_struct *files;
/* namespaces */
    struct nsproxy *nsproxy;
/* signal handlers 和信号处理相关的*/
    struct signal_struct *signal;
    struct sighand_struct *sighand;

    sigset_t blocked, real_blocked;
    sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
    struct sigpending pending;

    unsigned long sas_ss_sp;
    size_t sas_ss_size;
    int (*notifier)(void *priv);
    void *notifier_data;
    sigset_t *notifier_mask;
    struct callback_head *task_works;

    struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
    kuid_t loginuid;
    unsigned int sessionid;
#endif
    struct seccomp seccomp;

/* Thread group tracking */
    u32 parent_exec_id;
    u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 * mempolicy */
    spinlock_t alloc_lock;

    /* Protection of the PI data structures: */
    raw_spinlock_t pi_lock;

#ifdef CONFIG_RT_MUTEXES    //mutexes互斥锁,互斥器 
    /* PI waiters blocked on a rt_mutex held by this task */
    struct rb_root pi_waiters;
    struct rb_node *pi_waiters_leftmost;
    /* Deadlock detection and priority inheritance handling */
    struct rt_mutex_waiter *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
    /* mutex deadlock detection */
    struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS    //和调试相关 
    unsigned int irq_events;
    unsigned long hardirq_enable_ip;
    unsigned long hardirq_disable_ip;
    unsigned int hardirq_enable_event;
    unsigned int hardirq_disable_event;
    int hardirqs_enabled;
    int hardirq_context;
    unsigned long softirq_disable_ip;
    unsigned long softirq_enable_ip;
    unsigned int softirq_disable_event;
    unsigned int softirq_enable_event;
    int softirqs_enabled;
    int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
    u64 curr_chain_key;
    int lockdep_depth;
    unsigned int lockdep_recursion;
    struct held_lock held_locks[MAX_LOCK_DEPTH];
    gfp_t lockdep_reclaim_gfp;
#endif

/* journalling filesystem info */
    void *journal_info;

/* stacked block device info */
    struct bio_list *bio_list;

#ifdef CONFIG_BLOCK
/* stack plugging */
    struct blk_plug *plug;
#endif

/* VM state */
    struct reclaim_state *reclaim_state;

    struct backing_dev_info *backing_dev_info;

    struct io_context *io_context;

    unsigned long ptrace_message;
    siginfo_t *last_siginfo; /* For ptrace use.  */
    struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
    u64 acct_rss_mem1;  /* accumulated rss usage */
    u64 acct_vm_mem1;   /* accumulated virtual memory usage */
    cputime_t acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
    nodemask_t mems_allowed;    /* Protected by alloc_lock */
    seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
    int cpuset_mem_spread_rotor;
    int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
    /* Control Group info protected by css_set_lock */
    struct css_set __rcu *cgroups;
    /* cg_list protected by css_set_lock and tsk->alloc_lock */
    struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
    struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
    struct compat_robust_list_head __user *compat_robust_list;
#endif
    struct list_head pi_state_list;
    struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
    struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
    struct mutex perf_event_mutex;
    struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
    unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
    struct mempolicy *mempolicy;    /* Protected by alloc_lock */
    short il_next;
    short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
    int numa_scan_seq;
    unsigned int numa_scan_period;
    unsigned int numa_scan_period_max;
    int numa_preferred_nid;
    unsigned long numa_migrate_retry;
    u64 node_stamp;         /* migration stamp  */
    u64 last_task_numa_placement;
    u64 last_sum_exec_runtime;
    struct callback_head numa_work;

    struct list_head numa_entry;
    struct numa_group *numa_group;

    /*
     * Exponential decaying average of faults on a per-node basis.
     * Scheduling placement decisions are made based on the these counts.
     * The values remain static for the duration of a PTE scan
     */
    unsigned long *numa_faults_memory;
    unsigned long total_numa_faults;

    /*
     * numa_faults_buffer records faults per node during the current
     * scan window. When the scan completes, the counts in
     * numa_faults_memory decay and these values are copied.
     */
    unsigned long *numa_faults_buffer_memory;

    /*
     * Track the nodes the process was running on when a NUMA hinting
     * fault was incurred.
     */
    unsigned long *numa_faults_cpu;
    unsigned long *numa_faults_buffer_cpu;

    /*
     * numa_faults_locality tracks if faults recorded during the last
     * scan window were remote/local. The task scan period is adapted
     * based on the locality of the faults with different weights
     * depending on whether they were shared or private faults
     */
    unsigned long numa_faults_locality[2];

    unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

    struct rcu_head rcu;

    /*
     * cache last used pipe for splice  和管道相关的 
     */
    struct pipe_inode_info *splice_pipe;

    struct page_frag task_frag;

#ifdef  CONFIG_TASK_DELAY_ACCT
    struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
    int make_it_fail;
#endif
    /*
     * when (nr_dirtied >= nr_dirtied_pause), it's time to call
     * balance_dirty_pages() for some dirty throttling pause
     */
    int nr_dirtied;
    int nr_dirtied_pause;
    unsigned long dirty_paused_when; /* start of a write-and-pause period */

#ifdef CONFIG_LATENCYTOP
    int latency_record_count;
    struct latency_record latency_record[LT_SAVECOUNT];
#endif
    /*
     * time slack values; these are used to round up poll() and
     * select() etc timeout values. These are in nanoseconds.
     */
    unsigned long timer_slack_ns;
    unsigned long default_timer_slack_ns;

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
    /* Index of current stored address in ret_stack */
    int curr_ret_stack;
    /* Stack of return addresses for return function tracing */
    struct ftrace_ret_stack *ret_stack;
    /* time stamp for last schedule */
    unsigned long long ftrace_timestamp;
    /*
     * Number of functions that haven't been traced
     * because of depth overrun.
     */
    atomic_t trace_overrun;
    /* Pause for the tracing */
    atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
    /* state flags for use by tracers */
    unsigned long trace;
    /* bitmask and counter of trace recursion */
    unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
    unsigned int memcg_kmem_skip_account;
    struct memcg_oom_info {
        struct mem_cgroup *memcg;
        gfp_t gfp_mask;
        int order;
        unsigned int may_oom:1;
    } memcg_oom;
#endif
#ifdef CONFIG_UPROBES
    struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
    unsigned int    sequential_io;
    unsigned int    sequential_io_avg;
#endif
};

当前任务的CPU相关的状态,它在进程上下文切换的时候起着关键的作用,其中有sp、ip以及其它的和CPU相关的状态:

struct thread_struct {
    /* Cached TLS descriptors: */
    struct desc_struct  tls_array[GDT_ENTRY_TLS_ENTRIES];
    unsigned long       sp0;
    unsigned long       sp;
#ifdef CONFIG_X86_32
    unsigned long       sysenter_cs;
#else
    unsigned long       usersp; /* Copy from PDA */
    unsigned short      es;
    unsigned short      ds;
    unsigned short      fsindex;
    unsigned short      gsindex;
#endif
#ifdef CONFIG_X86_32
    unsigned long       ip;
#endif
#ifdef CONFIG_X86_64
    unsigned long       fs;
#endif
    unsigned long       gs;
    /* Save middle states of ptrace breakpoints */
    struct perf_event   *ptrace_bps[HBP_NUM];
    /* Debug status used for traps, single steps, etc... */
    unsigned long           debugreg6;
    /* Keep track of the exact dr7 value set by the user */
    unsigned long           ptrace_dr7;
    /* Fault info: */
    unsigned long       cr2;
    unsigned long       trap_nr;
    unsigned long       error_code;
    /* floating point and extended processor state */
    struct fpu      fpu;
#ifdef CONFIG_X86_32
    /* Virtual 86 mode info */
    struct vm86_struct __user *vm86_info;
    unsigned long       screen_bitmap;
    unsigned long       v86flags;
    unsigned long       v86mask;
    unsigned long       saved_sp0;
    unsigned int        saved_fs;
    unsigned int        saved_gs;
#endif
    /* IO permissions: */
    unsigned long       *io_bitmap_ptr;
    unsigned long       iopl;
    /* Max allowed port in the bitmap, in bytes: */
    unsigned        io_bitmap_max;
    /*
     * fpu_counter contains the number of consecutive context switches
     * that the FPU is used. If this is over a threshold, the lazy fpu
     * saving becomes unlazy to save the trap. This is an unsigned char
     * so that after 256 times the counter wraps and the behavior turns
     * lazy again; this to deal with bursty apps that only use FPU for
     * a short time
     */
    unsigned char fpu_counter;
};

进程的创建

fork一个子进程的代码。在MenuOS里fork调用的是sys_clone,但是最终都是调用的do_fork.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char * argv[])
{
    int pid;
    /* fork another process */
    pid = fork();
    if (pid < 0) 
    { 
        /* error occurred */
        fprintf(stderr,"Fork Failed!");
        exit(-1);
    } 
    else if (pid == 0) 
    {
        /* child process */
        printf("This is Child Process!\n");
    } 
    else 
    {  
        /* parent process  */
        printf("This is Parent Process!\n");
        /* parent will wait for the child to complete*/
        wait(NULL);
        printf("Child Complete!\n");
    }
}

创建一个新进程在内核中的执行过程

  • fork、vfork和clone三个系统调用都可以创建一个新进程,而且都是通过调用do_fork来实现进程的创建;
  • Linux通过复制父进程来创建一个新进程,那么这就给我们理解这一个过程提供一个想象的框架:
    • 复制一个PCB——task_struct
err = arch_dup_task_struct(tsk, orig);//复制父进程的task_struct数据结构
  • 要给新进程分配一个新的内核堆栈
ti = alloc_thread_info_node(tsk, node);
tsk->stack = ti;//分配内核堆栈
setup_thread_stack(tsk, orig); //这里只是复制thread_info,而非复制内核堆栈
  • 要修改复制过来的进程数据,比如pid、进程链表等等都要改改吧,见copy_process内部。
  • 从用户态的代码看fork();函数返回了两次,即在父子进程中各返回一次,父进程从系统调用中返回比较容易理解,子进程从系统调用中返回,那它在系统调用处理过程中的哪里开始执行的呢?这就涉及子进程的内核堆栈数据状态和task_struct中thread记录的sp和ip的一致性问题,这是在哪里设定的?copy_thread in copy_process
*childregs = *current_pt_regs(); //复制内核堆栈
childregs->ax = 0; //为什么子进程的fork返回0,这里就是原因!
 
p->thread.sp = (unsigned long) childregs; //调度到子进程时的内核栈顶
p->thread.ip = (unsigned long) ret_from_fork; //调度到子进程时的第一条指令地址

进程的创建概览及fork一个进程的用户态代码


创建新进程是通过复制当前进程来实现的

进程的创建是复制当前进程的进程信息,复制出来一个进程,即fork出一个进程。这个新创建出来的子进程和父进程的绝大部分信息是一样的,但是也有不同的,比如说pid,链表,内核堆栈,记录ip、sp的thread等。

设想创建新进程的过程中需要做哪些事

父进程创建子进程,会在一个地方复制父进程的PCB(task_struct),同时还有很多地方修改这个PCB,因为子进程有自己独立的信息,还会有一个地方分配一个新的内核堆栈。因为子进程是fork返回到用户态,所以它的内核堆栈中的一部分也要从父进程中拷贝过来,否则内核堆栈无法返回。此外,根据拷贝的内核堆栈的状况,设定自己的eip和esp的位置,如果位置不对,出栈的时候,执行到iret时,会和堆栈不一致。


系统调用内核处理函数sys_fork,sys_clone,sys_vfork

区别

linux-3.18.6/kernel/fork.c

#ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)
{
#ifdef CONFIG_MMU
    return do_fork(SIGCHLD, 0, 0, NULL, NULL);
#else
    /* can not support in nommu mode */
    return -EINVAL;
#endif
}
#endif
#ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)
{
    return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
            0, NULL, NULL);
}
#endif

几种带不同参数的clone:

#ifdef __ARCH_WANT_SYS_CLONE
#ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
         int __user *, parent_tidptr,
         int, tls_val,
         int __user *, child_tidptr)
#elif defined(CONFIG_CLONE_BACKWARDS2)
SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
         int __user *, parent_tidptr,
         int __user *, child_tidptr,
         int, tls_val)
#elif defined(CONFIG_CLONE_BACKWARDS3)
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
        int, stack_size,
        int __user *, parent_tidptr,
        int __user *, child_tidptr,
        int, tls_val)
#else
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
         int __user *, parent_tidptr,
         int __user *, child_tidptr,
         int, tls_val)
#endif
{
    return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
}
#endif

可以看到在用户态不管调用这三个系统调用中的哪一个,最后都调用了do_fork。
do_fork:

/*
 *  Ok, this is the main fork-routine.//fork的主要的处理例程 
 *
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
 */
long do_fork(unsigned long clone_flags,
          unsigned long stack_start,
          unsigned long stack_size,
          int __user *parent_tidptr,
          int __user *child_tidptr)
{
    struct task_struct *p;
    int trace = 0;
    long nr;

    /*
     * Determine whether and which event to report to ptracer.  When
     * called from kernel_thread or CLONE_UNTRACED is explicitly
     * requested, no event is reported; otherwise, report if the event
     * for the type of forking is enabled.
     */
    if (!(clone_flags & CLONE_UNTRACED)) {
        if (clone_flags & CLONE_VFORK)
            trace = PTRACE_EVENT_VFORK;
        else if ((clone_flags & CSIGNAL) != SIGCHLD)
            trace = PTRACE_EVENT_CLONE;
        else
            trace = PTRACE_EVENT_FORK;

        if (likely(!ptrace_event_enabled(current, trace)))
            trace = 0;
    }

    p = copy_process(clone_flags, stack_start, stack_size,
             child_tidptr, NULL, trace);            //创建一个进程内容的主要代码 
    /*
     * Do this prior waking up the new thread - the thread pointer
     * might get invalid after that point, if the thread exits quickly.
     */
    if (!IS_ERR(p)) {
        struct completion vfork;
        struct pid *pid;

        trace_sched_process_fork(current, p);

        pid = get_task_pid(p, PIDTYPE_PID);
        nr = pid_vnr(pid);

        if (clone_flags & CLONE_PARENT_SETTID)
            put_user(nr, parent_tidptr);

        if (clone_flags & CLONE_VFORK) {
            p->vfork_done = &vfork;
            init_completion(&vfork);
            get_task_struct(p);
        }

        wake_up_new_task(p);

        /* forking complete and child started to run, tell ptracer */
        if (unlikely(trace))
            ptrace_event_pid(trace, pid);

        if (clone_flags & CLONE_VFORK) {
            if (!wait_for_vfork_done(p, &vfork))
                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
        }

        put_pid(pid);
    } else {
        nr = PTR_ERR(p);
    }
    return nr;
}
static struct task_struct *copy_process(unsigned long clone_flags,
                    unsigned long stack_start,
                    unsigned long stack_size,
                    int __user *child_tidptr,
                    struct pid *pid,
                    int trace)
{
    ......
    出错处理
    ......
    p = dup_task_struct(current);//复制task_struct,p指向了子进程的进程描述符
    ......
    对子进程的初始化,修改
    ......
    /* copy all the process information */
    shm_init_task(p);
    retval = copy_semundo(clone_flags, p);
    if (retval)
        goto bad_fork_cleanup_audit;
    retval = copy_files(clone_flags, p);//初始化file 
    if (retval)
        goto bad_fork_cleanup_semundo;
    retval = copy_fs(clone_flags, p);//初始化文件系统 
    if (retval)
        goto bad_fork_cleanup_files;
    retval = copy_sighand(clone_flags, p);
    if (retval)
        goto bad_fork_cleanup_fs;
    retval = copy_signal(clone_flags, p);
    if (retval)
        goto bad_fork_cleanup_sighand;
    retval = copy_mm(clone_flags, p);//初始化内存 
    if (retval)
        goto bad_fork_cleanup_signal;
    retval = copy_namespaces(clone_flags, p);
    if (retval)
        goto bad_fork_cleanup_mm;
    retval = copy_io(clone_flags, p);//初始化io 
    if (retval)
        goto bad_fork_cleanup_namespaces;
    retval = copy_thread(clone_flags, stack_start, stack_size, p);//拷贝内核堆栈数据和指定新进程的第一条指令地址 
    if (retval)
        goto bad_fork_cleanup_io;

    if (pid != &init_struct_pid) {
        retval = -ENOMEM;
        pid = alloc_pid(p->nsproxy->pid_ns_for_children);
        if (!pid)
            goto bad_fork_cleanup_io;
    }

    p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
    ......
}
static struct task_struct *dup_task_struct(struct task_struct *orig)
{
    struct task_struct *tsk;
    struct thread_info *ti;
    int node = tsk_fork_get_node(orig);
    int err;

    tsk = alloc_task_struct_node(node);//alloc一个结点 
    if (!tsk)
        return NULL;

    ti = alloc_thread_info_node(tsk, node);//分配内核堆栈空间的效果 
    if (!ti)
        goto free_tsk;

    err = arch_dup_task_struct(tsk, orig);//执行了复制
    if (err)
        goto free_ti;

    tsk->stack = ti;
#ifdef CONFIG_SECCOMP
    /*
     * We must handle setting up seccomp filters once we're under
     * the sighand lock in case orig has changed between now and
     * then. Until then, filter must be NULL to avoid messing up
     * the usage counts on the error path calling free_task.
     */
    tsk->seccomp.filter = NULL;
#endif

    setup_thread_stack(tsk, orig);//复制task_thread_info信息 
    clear_user_return_notifier(tsk);
    clear_tsk_need_resched(tsk);
    set_task_stack_end_magic(tsk);

#ifdef CONFIG_CC_STACKPROTECTOR
    tsk->stack_canary = get_random_int();
#endif

    /*
     * One for us, one for whoever does the "release_task()" (usually
     * parent)
     */
    atomic_set(&tsk->usage, 2);
#ifdef CONFIG_BLK_DEV_IO_TRACE
    tsk->btrace_seq = 0;
#endif
    tsk->splice_pipe = NULL;
    tsk->task_frag.page = NULL;

    account_kernel_stack(ti, 1);

    return tsk;

free_ti:
    free_thread_info(ti);
free_tsk:
    free_task_struct(tsk);
    return NULL;
}
int __weak arch_dup_task_struct(struct task_struct *dst,
                           struct task_struct *src)
{
    *dst = *src;
    return 0;
}
/*
 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 * kmemcache based allocator.
 */
# if THREAD_SIZE >= PAGE_SIZE
static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
                          int node)
{
    //创建了两个页,一个存放thread_info,另一部分从高地址指向低地址的内核堆栈 
    struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
                          THREAD_SIZE_ORDER);

    return page ? page_address(page) : NULL;
}

创建的新进程是从哪里开始执行的

int copy_thread(unsigned long clone_flags, unsigned long sp,
    unsigned long arg, struct task_struct *p)
{
    struct pt_regs *childregs = task_pt_regs(p);//pt_regs
    struct task_struct *tsk;
    int err;

    p->thread.sp = (unsigned long) childregs;
    p->thread.sp0 = (unsigned long) (childregs+1);
    memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));

    if (unlikely(p->flags & PF_KTHREAD)) {
        /* kernel thread */
        memset(childregs, 0, sizeof(struct pt_regs));
        p->thread.ip = (unsigned long) ret_from_kernel_thread;
        task_user_gs(p) = __KERNEL_STACK_CANARY;
        childregs->ds = __USER_DS;
        childregs->es = __USER_DS;
        childregs->fs = __KERNEL_PERCPU;
        childregs->bx = sp; /* function */
        childregs->bp = arg;
        childregs->orig_ax = -1;
        childregs->cs = __KERNEL_CS | get_kernel_rpl();
        childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
        p->thread.io_bitmap_ptr = NULL;
        return 0;
    }
    *childregs = *current_pt_regs();
    childregs->ax = 0;
    if (sp)
        childregs->sp = sp;

    p->thread.ip = (unsigned long) ret_from_fork;
    task_user_gs(p) = get_user_gs(current_pt_regs());

    p->thread.io_bitmap_ptr = NULL;
    tsk = current;
    err = -ENOMEM;

    if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
        p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
                        IO_BITMAP_BYTES, GFP_KERNEL);
        if (!p->thread.io_bitmap_ptr) {
            p->thread.io_bitmap_max = 0;
            return -ENOMEM;
        }
        set_tsk_thread_flag(p, TIF_IO_BITMAP);
    }

    err = 0;

    /*
     * Set a new TLS for the child thread?
     */
    if (clone_flags & CLONE_SETTLS)
        err = do_set_thread_area(p, -1,
            (struct user_desc __user *)childregs->si, 0);

    if (err && p->thread.io_bitmap_ptr) {
        kfree(p->thread.io_bitmap_ptr);
        p->thread.io_bitmap_max = 0;
    }
    return err;
}

int指令和SAVE_ALL压到内核堆栈的内容
复制内核堆栈只复制下边这些

struct pt_regs {
    unsigned long bx;
    unsigned long cx;
    unsigned long dx;
    unsigned long si;
    unsigned long di;
    unsigned long bp;
    unsigned long ax;//传递的系统调用号 
    unsigned long ds;
    unsigned long es;
    unsigned long fs;
    unsigned long gs;
    unsigned long orig_ax;
    unsigned long ip;
    unsigned long cs;
    unsigned long flags;
    unsigned long sp;
    unsigned long ss;
};
ENTRY(ret_from_fork)
    CFI_STARTPROC
    pushl_cfi %eax
    call schedule_tail
    GET_THREAD_INFO(%ebp)
    popl_cfi %eax
    pushl_cfi $0x0202       # Reset kernel eflags
    popfl_cfi
    jmp syscall_exit      #会跳转到system_call里边的syscall_exit,继续向下进行
    CFI_ENDPROC
END(ret_from_fork)
ENTRY(system_call)
    RING0_INT_FRAME         # can't unwind into user space anyway
    ASM_CLAC
    pushl_cfi %eax          # save orig_eax
    SAVE_ALL
    GET_THREAD_INFO(%ebp)
                    # system call tracing in operation / emulation
    testl $_TIF_WORK_SYSCALL_ENTRY,TI_flags(%ebp)
    jnz syscall_trace_entry
    cmpl $(NR_syscalls), %eax
    jae syscall_badsys
syscall_call:
    call *sys_call_table(,%eax,4)
syscall_after_call:
    movl %eax,PT_EAX(%esp)      # store the return value
syscall_exit:
    LOCKDEP_SYS_EXIT
    DISABLE_INTERRUPTS(CLBR_ANY)    # make sure we don't miss an interrupt
                    # setting need_resched or sigpending
                    # between sampling and the iret
    TRACE_IRQS_OFF
    movl TI_flags(%ebp), %ecx
    testl $_TIF_ALLWORK_MASK, %ecx  # current->work
    jne syscall_exit_work

restore_all:
    TRACE_IRQS_IRET
restore_all_notrace:

参考这个"关于kernel_thread的补充说明"分析的很透彻


使用gdb跟踪创建新进程的过程

在MenuOS里增加一个fork命令,用带有fork的test_fork.c把test.c给覆盖掉



编译之后,可以看到列表中多了fork命令。执行fork命令之后,它会创建一个子进程。父进程和子进程都输出了信息。



使用gdb跟踪:

设置几个断点:


继续执行,执行到了do_fork


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容

  • 又来到了一个老生常谈的问题,应用层软件开发的程序员要不要了解和深入学习操作系统呢? 今天就这个问题开始,来谈谈操...
    tangsl阅读 4,077评论 0 23
  • 进程的描述 进程控制块PCB -- task_struct 操作系统的三大核心功能:1、进程管理2、内存管理3、文...
    _Iridescent阅读 1,935评论 0 1
  • 进程是怎么描述的?这是一个提纲挈领性的东西,它可以把内存管理,文件系统,信号,进程间通信等等全都串联起来 进程的描...
    那只大象阅读 3,574评论 0 6
  • 一,什么是说服 经过讨论使异见者或无主见者赞同自己观点 二,说服的意义 1.达成共识 2.探求真理 3.结成伙伴 ...
    EdenYang阅读 480评论 0 0
  • 儿童玩具车包括的种类有很多,儿童三轮车、儿童自行车、儿童电动摩托车等,而对于条件好的家庭,就会为孩子买各种的儿童...
    辣妈帮6868阅读 2,095评论 0 0