六:逻辑回归:损失函数、梯度、决策边界(20191209-20191215)

0x00 内容

逻辑回归:损失函数、梯度、决策边界

实践:代码实现及sklearn逻辑回归

0x01 逻辑回归

逻辑回归(Logistic Regression,LR),LR的建模过程体现了数据建模中很重要的思想:对问题划分层次,并利用非线性变换和线性模型的组合,将未知的复杂问题分解为已知的简单问题。因此说:理解好逻辑回归的细节,就掌握了数据建模的精髓。

1.1 线性回归是不能解决分类问题

在使用线性回归模型时,实际上做了3个或更多的假设:

1.因变量yi和自变量xi之间呈线性相关

2.自变量xi与干扰项εi相互独立

3.没被线性模型捕捉到的随机因素εi服从正态分布

理论上来说,任何数据放在任何模型里都会得到相应的参数估计,进而通过模型对数据进行预测。但是这并不一定能保证模型效果,因此建模的过程中需要不断提出假设和检验假设。

1.2 用逻辑回归解决分类问题

逻辑回归原理是将样本的特征样本发生的概率联系起来,即,预测的是样本发生的概率是多少。由于概率是一个数,因此被叫做“逻辑回归”

在逻辑回归算法中,得到的预测值是一个概率,在概率的基础上设置一个阈值,即完成分类。(逻辑回归只能解决二分类问题,如果是多分类问题,LR本身是不支持的。)

0x02 LR算法数学推导

参考阅读1.《出场率No.1的逻辑回归算法,是怎样“炼成”的?》(0x02 LR算法数学推导)

逻辑回归是解决分类问题的,本质是求概率再分类。在分类结果的背后是隐藏变量的博弈,我们认为隐藏变量与特征是线性相关的,因此就可以对隐藏变量之差求概率(得到随机变量的累积分布函数),得到probit回归模型。为了使数学公式更为简单,使用sigmoid函数去近似,最终得到逻辑回归模型:

数学家们发现:正态分布在线性变换下保持稳定,而逻辑分布可以很好地近似正态分布。因此可以使用标准逻辑分布的累积分布函数σ(t)来替换正态分布的累积分布函数Fε(t)。

0x03 逻辑回归的损失函数

3.1 推导

逻辑回归和线性回归最大的区别就是:逻辑回归解决的是分类问题,得到的y要么是1,要么是0。而我们估计出来的p是概率,通过概率决定估计出来的p到底是1还是0。因此,也可以将损失函数分成两类:

    如果给定样本的真实类别y=1,则估计出来的概率p越小,损失函数越大(估计错误)

    如果给定样本的真实类别y=0,则估计出来的概率p越大,损失函数越大(估计错误)

可以使用如下函数:

求整个集合内的损失可以取平均值:

替换成sigmoid函数,得到逻辑回归的损失函数如下

3.2 另一种推导

逻辑回归的损失函数是根据逻辑回归本身式子中系数的最大似然估计推导而来的。 (最大似然估计就是通过已知结果去反推最大概率导致该结果的参数。极大似然估计是概率论在统计学中的应用,它提供了一种给定观察数据来评估模型参数的方法,即 “模型已定,参数未知”,通过若干次试验,观察其结果,利用实验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。)

逻辑回归是一种监督式学习,是有训练标签的,就是有已知结果的,从这个已知结果入手,去推导能获得最大概率的结果参数,只要我们得出了这个参数,那我们的模型就自然可以很准确的预测未知的数据了。

逻辑回归的损失函数如下: (推到过程参考《逻辑回归的本质及其损失函数的推导、求解》0x02.2)

0x04 损失函数的梯度

0x05 决策边界 

5.1决策边界

5.2 线性&非线性决策边界

所谓决策边界就是能够把样本正确分类的一条边界,主要有线性决策边界(linear decision boundaries)和非线性决策边界(non-linear decision boundaries)。(注意:决策边界是假设函数的属性,由参数决定,而不是由数据集的特征决定。)

0x06 逻辑回归的非线性决策边界

线性回归转换成多项式回归

让逻辑回归学习非直线的决策边界,引入多项式项转换成线性回归问题:从(x^2)特征来说来说还是线性边界,针对于x来说变成了非线性的圆形决策边界。这就从线性回归转换成多项式回归,同理为逻辑回归添加多项式项,就可以对非线性的方式进行比较好的分类,决策边界就是曲线的形状。

0x07 逻辑回归中使用正则化

在逻辑回归中添加多项式项,从而得到不规则的决策边界,对非线性的数据进行很好的分类。添加多项式项之后,模型会变变得很复杂,非常容易出现过拟合,因此就需要使用正则化。

对损失函数增加L1正则或L2正则。可以引入一个新的参数 α来调节损失函数和正则项的权重,如:J(θ)+α(L1)

如果在损失函数前引入一个超参数C,即C.J(θ)+L1,如果C越大,优化损失函数时越应该集中火力,将损失函数减小到最小;C非常小时,此时L1和L2的正则项就显得更加重要。其实损失函数前的参数C,作用相当于参数α前的一个倒数。在逻辑回归中,对模型正则化更喜欢使用C.J(θ)+L1这种方式。

7.2 模型的正则化

7.2.1 L2正则

使用参数C进行模型正则化,在构建管道时,用参数C去覆盖。同时在生成多项式逻辑回归实例参数时,同样设置阶数为20,然后设置一个比较小的损失函数的权重参数C=0.1,相当于让模型正则化的项起到更大的作用,让分类准确度损失函数起到小一点的作用。

0x08 回顾(面试问题)

面试问题:为什么要使用sigmoid函数作为假设?

可以回答:因为线性回归模型的预测值为实数,而样本的类标记为(0,1),我们需要将分类任务的真实标记y与线性回归模型的预测值联系起来,也就是找到广义线性模型中的联系函数如果选择单位阶跃函数的话,它是不连续的不可微。而如果选择sigmoid函数,它是连续的,而且能够将z转化为一个接近0或1的值。

参考阅读:

1.《出场率No.1的逻辑回归算法,是怎样“炼成”的?》

2.《逻辑回归的本质及其损失函数的推导、求解》

3.《逻辑回归代码实现与调用》

4.《逻辑回归的决策边界及多项式》

5.《sklearn中的逻辑回归中及正则化》

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容