SortShuffle之UnsafeShuffleWriter

UnsafeShuffleWriter 对应SortShuffle的tungsten-sort方式

实现方式参考图:

image

UnsafeShuffleWriter内部使用了和BytesToBytesMap基本相同的数据结构处理map端的输出,不过将其细化为ShuffleExternalSorter和ShuffleInMemorySorter两部分,功能如下

ShuffleExternalSorter 使用MemoryBlock存储数据,每条记录包括长度信息和K-V Pair

ShuffleInMemorySorter 使用long数组存储每条记录对应的位置信息(page number + offset),以及其对应的PartitionId,共8 bytes

排序-Sort

排序的规则是一句partitionId,partitionId这是依据数据hash(Key)得到的。
写文件或溢写前(spill到disk前),根据数据的PartitionId信息,使用TimSort算法对ShuffleInMemorySorter的long数组排序,排序的结果为,PartitionId相同的聚集在一起,且PartitionId较小的排在前面,ShuffleExternalSorter中的数据不需要处理,如下图所示:

写文件-溢出-Spill

依次读取ShuffleInMemorySorter中long数组的元素,再根据page number和offset信息去ShuffleExternalSorter中读取K-V Pair写入文件,如下图所示:

image

合并-Merge

内存不足时,溢写bucket缓存数据到磁盘,每次溢写会生成上图中的一个filteSegemtn,如果多次溢写产生多个fileSegment(图中的tmp dataFile),会在map端数据处理结束后进行merge合并为一个dataFile,如下图所示:

至此,UnsafeShuffleWriter的实现就介绍完了。

优势

SPARK-7081中简述了UnsafeShuffleManager的优势,如下介绍:

  1. ShuffleExternalSorter使用UnSafe API操作序列化数据,而不是Java对象,减少了内存占用及因此导致的GC耗时(参考Spark 内存管理之Tungsten),这个优化需要Serializer支持relocation。

  2. ShuffleExternalSorter存原始数据,ShuffleInMemorySorter使用压缩指针存储元数据,每条记录仅占8 bytes,并且排序时不需要处理原始数据,效率高。

  3. 溢写 & 合并这一步操作的是同一Partition的数据,因为使用UnSafe API直接操作序列化数据,合并时不需要反序列化数据。

  4. 溢写 & 合并可以使用fastMerge提升效率(调用NIO的transferTo方法),设置spark.shuffle.unsafe.fastMergeEnabled为true,并且如果使用了压缩,需要压缩算法支持SerializedStreams的连接,各默认值如下

使用

Spark Shuffle之Sort Shuffle中讨论了使用UnsafeShuffleWriter需满足的前提条件,如下

image

接下来分析下为什么要满足这三个要求

  1. map-side aggregation:从上面的实现也可以看出,UnsafeShuffleWriter不是类似HashMap的数据结构,无法聚合key对应的value,所以无法支持map端的aggregation。

  2. Partition数小于16777216:参考第一幅图,存储PartitionId信息使用24bit,能表示的最大值为 (1 << 24) = 16777215,因此Partition数要小于16777216。

  3. Serializer支持relocation:原始数据首先被序列化处理,并且再也不需要反序列,在其对应的元数据被排序后,需要Serializer支持relocation,在指定位置读取对应数据。

总结

本文介绍tungsten-sort(UnsafeShuffleWriter)的实现、优势及何种情况下被Spark使用。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容