百度百科定义:
柯里化(Currying)是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数且返回结果的新函数的技术。
从数学的角度讲,这是一个对函数消元求解的过程:
```
def f(x:Int,y:Int)=x+y
def g(x:Int)=f(x,1)
def z=g(1)
z=2
```
那么z也可以写成这样:def z=(x:Int)=>(y:Int)=>x+y
例如:
```
def add(x:Int,y:Int)=x+y
```
柯里化后:
```
def add(x:Int)(y:Int)=x+y
```
实际实现是scala的语法糖,依次调用两个普通函数,第一次调用函数(x),第二次调用时使用了(x)的返回值。
```
def add=(x:Int)=>(y:Int)=>x+y
```
那么具体怎么实现柯里化呢?
假设我原始的普通函数 def add(x:Int,y:Int)=x+y
目标函数是Int=>Int=>Int (或者Int=>(Int=>Int))
大概长这样def add=(x:Int)=>(y:Int)=>x+y
抽象出来是[参数1=>参数2=>function(参数1,参数2)]
柯里化函数:
```
def curry[A,B,C](f: (A, B) => C): A => (B => C) = a => b => f(a, b)
curry: [A, B, C](f: (A, B) => C)A => (B => C)
```
用柯里化函数调用非柯里化函数add后:
```
def add(x:Int,y:Int)=x+y
def addCurry=curry(add)
addCurry: Int => (Int => Int)
```
测试:
```
addCurry(1)(2)
res10: Int = 3
```
在scala的隐式转换中,currying经常被用到,以monoid为例:
```
trait Monoid[A] {
def mappend(a1: A, a2: A): A
def mzero: A
}
object IntMonoid extends Monoid[Int] {
def mappend(a: Int, b: Int): Int = a + b
def mzero: Int = 0
}
def sum[A](xs: List[A])(implicit m: Monoid[A]): A = xs.foldLeft(m.mzero)(m.mappend)
implicit val intMonoid = IntMonoid
sum(List(1, 2, 3, 4))
```
另外通过currying可以更随意组装函数:
```
def combine(a:Int)(b:(Int,Int)=>Int)=(x:Int)=>b(a,x)
combine: (a: Int)(b: (Int, Int) => Int)Int => Int
def add(x:Int,y:Int)=x+y
def minus(x:Int,y:Int)=x-y
```
结果如下:
```
combine(1)(add)(1)
res20: Int = 2
combine(5)(minus)(2)
res21: Int = 3
```
已经知道curry,那么逆向函数uncurry呢?
```
def curry[A,B,C](f: (A, B) => C): A => (B => C)=a=>b=>f(a,b)
```
我们的目标是把A=>(B=>C)转为(A,B)=>C,即:
```
def uncurry[A,B,C](f: A => B => C): (A, B) => C=(a,b)=>f(a)(b)
```
测试一下:
```
def add(x:Int,y:Int)=x+y
curry(add)(1)(2)
res1: Int = 3
uncurry(curry(add))(1,2)
res2: Int = 3
```
---------------------
本文来自 onwingsofsong 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/onwingsofsong/article/details/77822920?utm_source=copy