跟着Cell学作图 | Proteomaps图

treemap.jpg

跟着Cell学作图 | Proteomaps图

image-20220122152246516

REFERENCES

Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, Shenoy A, Ayasun R, Knafo N, Xu S, Anafi L, Yanovich-Arad G, Barnabas GD, Ashkenazi S, Besser MJ, Schachter J, Bosenberg M, Shadel GS, Barshack I, Kaech SM, Markel G, Geiger T. Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell. 2019 Sep 19;179(1):236-250.e18. doi: 10.1016/j.cell.2019.08.012. Epub 2019 Sep 5. PMID: 31495571; PMCID: PMC7993352.

22

读图

Snipaste_2022-01-22_15-39-04

蛋白质组图显示蛋白质组的定量组成,重点关注蛋白质的功能。它们是根据蛋白质组数据和KEGG通路基因分类自动建立的。每个蛋白质用一个多边形表示,功能相关的蛋白质排列在共同区域。为了强调高表达的蛋白质,多边形区域代表蛋白质丰度,以蛋白质大小加权。

本文的图显示,TIL(tumor infiltrating lymphocyte )治疗 和Anti- PD1(pro-grammed death 1) 治疗的有反应组(Responders)和无反应组(Non-responders)的差异蛋白(DEPS)KEGG富集情况。图谱显示TIL处理后DEPSKEGG通路与抗PD1处理的DEPSKEGG通路高度相似

示例数据

使用两列tsv格式(TAB分隔)。第一列为基因名称/蛋白质uniprot ID,第二列为相对面积大小/丰度值。两列之间以TAB分隔。

image-20220122165138223

开始作图

  1. 打开链接

    http://bionic-vis.biologie.uni-greifswald.de/

    image-20220122170552953
  2. 导入数据点击submit

  3. 查看结果

    image-20220122170846036

结果展示

image-20220122171127419

展示一下不同层次

image-20220122171557191
image-20220122171620288
image-20220122171634139

注意

使用Proteomaps,需引用

[1] Liebermeister W., Noor E., Flamholz A., Davidi D., Bernhardt J., and Milo R. (2014), Visual account of protein investment in cellular functions. PNAS 111 (23), 8488-8493.

后记

关于更<u>详细的代码讲解、作者的原代码的一些细节以及我修改的地方</u>会在之后的视频教程中详细讲到,有兴趣的可以关注我的B站【木舟笔记】

往期内容

  1. 跟着Nature学作图 | 配对哑铃图+分组拟合曲线+分类变量热图
  2. (免费教程+代码领取)|跟着Cell学作图系列合集
  3. 跟着Nat Commun学作图 | 1.批量箱线图+散点+差异分析
  4. 跟着Nat Commun学作图 | 2.时间线图
  5. 跟着Nat Commun学作图 | 3.物种丰度堆积柱状图
  6. 跟着Nat Commun学作图 | 4.配对箱线图+差异分析

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容