深度学习中的目标追踪概述(VOT in DeepLearning)

什么是目标追踪(Visual Object Tracking)?

跟踪就是在连续的视频帧中定位某一物体。

• 跟踪VS检测

1.跟踪速度比检测快

当你跟踪在上一帧中检测到的对象时,你会非常了解目标的外观。你也知道在前一帧中的位置和它的运动的方向和速度。因此,在下一帧中,可以使用所有这些信息来预测下一帧中目标的位置,并对对象的预期位置进行小范围搜索,以准确定位目标。因此,在设计高效的系统时,通常在每n帧上运行对象检测,而在其间的n-1帧中采用跟踪算法。

2.当检测失败时跟踪来帮助

3.跟踪保留身份信息

目标检测的输出是包含目标的矩形数组。 但是,没有标识附加到对象。


• 几大难点

外观变形,光照变化,快速运动和运动模糊,背景相似干扰:

平面外旋转,平面内旋转,尺度变化,遮挡和出视野等情况:


• 数据集

• OTB50 & OTB100  (2013)

涉及到灰度图像和彩色图像,均可以免费下载,涉及到目标跟踪的11个属性,包括光照变化、尺度变化、遮挡、形变、运动模糊、快速运动、平面内旋转、平面外旋转、出视野、背景干扰、低像素。


OTB 50数据集

• VOT2013 - VOT2018 (竞赛数据集,Each Year)

每年公开的60个序列,官方会对公开序列的前10名在隐藏数据集上测试,从而选出最终的winner,难度高于OTB。


VOT竞赛数据集

• 评价指标

1、平均重叠期望(EAO)是对每个跟踪器在一个短时图像序列上的非重置重叠的期望值,是VOT评估跟踪算法精度的最重要指标。

2、准确率(Accuracy)是指跟踪器在单个测试序列下的平均重叠率(两矩形框的相交部分面积除以两矩形框的相并部分的面积。(MeanIOU)

3、鲁棒性(Robustness)是指单个测试序列下的跟踪器失败次数,当重叠率为0时即可判定为失败。

具体看一下这张图就能明白:

EAO的含义

目标追踪的算法分类(Common Methods)

• 生成(generative)模型方法

生成类方法,在当前帧对目标区域建模,下一帧寻找与模型最相似的区域就是预测位置,比较著名的有卡尔曼滤波,粒子滤波,mean-shift等。举个例子,从当前帧知道了目标区域80%是红色,20%是绿色,然后在下一帧,搜索算法到处去找最符合这个颜色比例的区域。算法效果并不理想,因此现在用的很少。

•判别(discriminative)模型方法

OTB50里面的大部分方法都是这一类,经典套路,图像特征+机器学习

当前帧以目标区域为正样本,背景区域为负样本,机器学习训练分类器,下一帧用训练好的分类器找最优区域。

与生成类方法最大的区别,是分类器训练过程中用到了背景信息,这样分类器专注区分前景和背景,判别类方法普遍都比生成类好。   经典判别类方法有Struck和TLD(Performace well in long-term task)。 判别类方法的最新发展就是相关滤波类方法,correlation filter简称CF,或discriminative correlation filter简称DCF,和深度学习(Deep ConvNet based)类方法,而DCF+CNN的做法成为最近VOT刷榜的标配。2018年的VOT,基于全卷积孪生网络(SiamNet)的方法大崛起,凭借超越DCF方法的准确度和端到端训练的优势,成为目标追踪新的研究方向。

CF算法示意图

下图是GitHub上发布的2018VOT系统分支结构,上述算法都含在其中了。


北京飞搜科技&北京邮电大学代表队提交的结果(CFWCR)获得VOT 2017竞赛公开的60个评测序列中第二名。方法基于业界流行的相关滤波的框架,使用了单CNN特征的多尺度追踪方案。现有很多追踪器融合了CNN特征和传统的机器学习特征,如hog特征,CN颜色特征等。在他们的实验中,发现CNN的浅层特征具有物体轮廓的信息,高层的深度特征具有物体的语义信息,将CNN的浅层和高层特征进行融合,能使追踪器具有很好的性能。
VOT 2018 内测结果

· 相关滤波算法(CF)

Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性,对于两个数据 f 和g,则两个信号的相关性为:

其中 f∗表示 f 的复共轭,这是和卷积的区别(相关性 与 卷积 类似,区别就在于里面的共轭)。


对于图像来讲,问题描述为要找到一个 滤波模版 h,与输入图像 f 求相关性,得到相关图 g。


模板与图形的相关运算

为了加快计算速度,这里引入了傅里叶变换,根据卷积定理(correlation版本)可知,函数互相关的傅里叶变换等于函数傅里叶变换的乘积:


CF的流程图



· HCF(CF+CNN,Since 2015)

2015开始,深度学习开始进军跟踪领域,使用深度学习可以更好的提取目标的特征,对目标进行更好的表达。低层特征有较高的分辨率能够对目标进行精准的定位,高层特征包含更多的语义信息,能够处理较大的目标变化和防止跟踪器漂移,能够对目标进行范围定位。但是深度学习的缺点就在于网络的训练和速度,即使如HCF等使用离线的训练速度仍然慢。


深度学习+CF

· SiamFC(Pure CNN)

SiamFC的结构


上面一支可以看做是一个模板。其中z是第一帧所给出的目标框,φ 表示一种特征提取方法,SiamFC提取的是深度特征,经过全卷积网络后得到一个6X6X128的feature map φ(z)。

下面一支x可以看为当前帧的搜索区域,同样提取了深度特征之后得到一个22X22X128的feature map φ(x)。

两支的交汇是一个互相关层,可以看成是φ(z)在φ(x)上滑动搜索,最后得到一个响应图,图上最大值对应的点就是算法认为的目标中心所在位置。


· FlowTrack

《End-to-end Flow Correlation Tracking with Spatial-temporal Attention》(2018CVPR,商汤)

阅读笔记

背景:

①DCF方法很火(KCF、SAMF、LCT、MUSTer、SRDCF、CACF),但是  应用人工设定的特征使得这一类算法精度鲁棒性都较差;

② 受深度学习影响,很多结合CNN的算法(DeepSRDCF、HCF、SiamFC)出现,它们都只应用到当前帧的信息而很少关注帧间存在的互信息,并  且CNN的机制导致了tracker在目标遇到运动模糊或者部分遮挡的时候,  性能只能依靠离线train的特征的质量,鲁棒性很难保证。

③ 尽管一些追踪器用到了光流特征,但是这些模型是离线的,非端到端  的,所以结果是非最理想的。

  本文提出FlowTrack网络,应用到flow information和appearance features,有机结合到端对端的网络中,在VOT2015和VOT2016任务中,EAO属性排名第一,速度为12FPS。

FlowTrack的网络架构

结构是一个基于Siamese的双流训练网络。分为historical branch和current branch. 在historical branch里面,进行Flow的提取和warp操作融合阶段,作者设计了一种spatial-temporal attention的机制。 在current branch,只提取feature. Siamese结构两支出来的feature送进DCF layer, 得到相应输出。 总结来说,他们把Flow提取,warp操作,特征提取和融合,CF tracking都做成了网络的layer,端到端地训练它们。其中需要注意的是,wrap是指的是一种点到点的映射关系,实现flownet出来的光流图到高阶特征的映射。在从t-1到t-n的特征融合阶段,设计了一种spatial-temporal attention的机制。在spatial attention中,是对空间位置上每一个待融合的点分配权重,具体采用余弦距离衡量,结果就是和当前帧越相似分配的权重越大,反之越小;这么做的问题是当前帧的权重永远最大,所以本文借鉴SENet的思想进而设计了temporal attention,即把每一帧看做一个channel,设计一个质量判断网络。


(1)跟踪使用的特征由Feature CNN提取;

Feature CNN:由三个卷积层构成(3x3x128, 3x3x128, 3x3x96)。

特征提取

(2)光流信息由FlowNet提取;

FlowNet:2015年被提出,是用来提取光流场的深度网络,9层卷积。

FlowNet的9层光流提取模型


 (3) Warp操作按特征通道进行:

其中m表示通道,p表示原始图像上点的坐标,δp表示点的光流,q表示特征图上点的坐标,K是双线性插值核。

 (4)Spatial-temporal attention给各通道特征赋予权值;

                           Spatial attention + Temporal attention

                                      空间             +            时间

时空提取attention模块

Spatial 的提取: 计算Spatial attention,并融合特征。其中上标e表示通过Bottleneck结构(降维到特定空间)找到的嵌入层特征,p表示原始Feature map上的点坐标。总的来说,这个部分的物理意义是,对与t-1帧特征不相似的特征赋予低权重,反之,与其相似的赋予高权重。

temporal的加入:Spatial Attention的问题是当前帧的权重永远最大,解决方法引入Temporal 机制,设计一个质量判断网络:从Spatial attention输出来的权重map,输入Temporal attention结构,经过一个类似SE-Net(ImageNet Classification Champion,2017,Momenta)的结构,得到通道重要性权值,可以看作是对Spatial attention的二次调整。


实验结果

多策略的对比
VOT 2016 1st
VOT 2017 2rd

可以看出提升效果相对于传统的CF还是很明显的,虽然2018年rank不到top 5,但是提供了我们一种新颖的思路,以后可以多多学习一波。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,911评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,014评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 142,129评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,283评论 1 264
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,159评论 4 357
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,161评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,565评论 3 382
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,251评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,531评论 1 292
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,619评论 2 310
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,383评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,255评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,624评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,916评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,199评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,553评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,756评论 2 335

推荐阅读更多精彩内容