高效、快速、准确、动态的人口统计新实践

​前言

作为社会的主体,人口是影响社会发展的基本力量,人口规模的变化是决定城市空间规模的重要影响因素。我国正处在城市高速发展时期,城市规划的重要性日益凸显,人口的量化分析占有越发重要的地位。

城市人口数量每时每刻都在变化,自身增长规律十分复杂。目前,人口统计方法基本分为静态统计和动态统计两种。静态统计一般广泛应用于统计局、公安局等部门,以普查、抽查、登记等传统手段为主,有耗时高、成本大、效率低等特点。

近几年,随着大数据和数据科学的兴起,基于信令、手机APP、GIS应用的移动位置大数据动态人口统计方法正在迅速发展,补充了传统人口统计数据来源,可以作为动态人口统计结果的参考标准。

基于移动数据的动态人口统计

TalkingData覆盖数据具有来源丰富、种类齐全、数据体量大等特点。目前,TalkingData除了自有移动互联网数据,还整合了运营商等合作伙伴的数据,包含GPS、基站、WiFi等位置信息。

下图以计算年度数据为例,介绍TalkingData动态人口统计的主体逻辑:

TalkingData人口统计团队提取一年内的所有移动设备数据,基于用户群体出现天数、驻留时长、时间间隔维度建立评估模型,同时根据静态统计结果,建立了判定稳定用户的阈值。基于阈值对设备进行过滤去重之后,即可建立稳定用户基础库。之后的各项指标计算都是基于稳定用户基础库进行的。

对获得的稳定用户基础库从时间、空间维度上进行聚类筛选,可得到更丰富的统计结果。比如对省市聚类,可以获得全国各省份全年的相关结果;对时间聚类,可以获得某一段特定时间的数据统计结果;考虑相邻两个月的人口迁移,可以得到省份的人口流入流出情况。

人口统计实践

下面展示TalkingData人口统计的部分实践。

① 2018年4月北京市十六区常住人口占比:

TalkingData人口统计团队用2016年8月份移动运营商常住人口占比与2016年北京城十六区年鉴常住人口占比作为参考。对比发现,TalkingData计算得出的北京市区县常住人口中,占比前四的区县分别为朝阳区、海淀区、丰台区和昌平区,与运营商数据和统计年鉴一致,但TalkingData和运营商计算的朝阳区常住人口占比都高于统计年鉴中的人口比例。

为了衡量TalkingData的计算准确度,我们以2016年北京城十六区年鉴常住    人口占比为基准,对比TalkingData计算的人口占比的偏差程度。对比发现,TalkingData与年鉴数据误差的均值为0.98%,标准差为1.61%。移动运营商数据与年鉴数据误差的均值为0.90%,标准差为1.47%。

② 2017年11月深圳区域常住人口占比:

TalkingData人口统计团队用2017年11月份移动运营商计算的深圳常住人口占比与深圳统计局年鉴中的2016年常住人口占比作为参考。对比发现,三份数据整体趋势非常接近。

我们以年鉴的人口占比为基准,对比TalkingData计算的人口占比的偏差程度。对比发现,TalkingData与年鉴数据误差的均值为1.24%,标准差为1.61%。移动运营商数据与年鉴数据误差的均值为1.57%,标准差为1.81%,二者很接近,TalkingData略优于移动运营商数据。

③ 2017年11至2018年4月北京市常住人口变化:

上图为从2017年11至2018年4月份,北京的常住人口变化趋势。我们发现二月北京常住人口稍有减少,我们认为这是由“春运”造成的,符合常识认知。

上图分别展示了2017年11至2018年4月北京常住人口的环比变化趋势。北京常住人口总体在2017年11月份到2018年1月份体现出了下降趋势。2018年2、3月份受春节影响,常住人口有超过7%的下降和回流。2018年3、4月份数据基本持平,有轻微的上升。

④ 2018年4月全国人口统计:

上图以2017年年鉴的全国省份数据为标准,对比了TalkingData计算的2018年4月的全国人口统计结果。我们发现误差平均值为0.90%,标准差为1.21%,TalkingData计算结果与年鉴占比相似程度较高,具有较强的参考价值。

TalkingData 《2017年移动互联网行业发展报告》指出,截至2017年12月,我国移动智能终端规模达到14.2亿台,且逐渐向三线及以下城市下沉,移动互联网已全面普及。基于移动位置大数据动态人口统计方法将是未来人口统计的发展趋势,与传统人口统计相结合,能够更好地帮助政府实现智慧的城市规划与管理,实现人民生活环境的整体改善。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • 首先摘抄下重庆市历年统计年鉴的部分内容 2016年全市常住人口3048.43万人,比上年增加31.88万人,其中城...
    轩律阅读 1,273评论 0 1
  • 亲子日记第二十三篇 天气:晴 今晚回来的时候就八点多了,孩子在看动画片,看到我回来很高兴。一会儿他就把...
    叶落悠悠阅读 146评论 0 0
  • KIN 220 水晶黃太陽 Yellow Crytal Sun 公元2017年/12/29 (五) 農曆冬月十二 ...
    RonaLoo阅读 267评论 0 0
  • 今天看了“真实故事计划”里的一篇文章,“他在长江大桥救下323人”。 真的不容易,救人者陈思坚持了多少年,面对妻子...
    华港小练阅读 1,065评论 19 72
  • 前言: 上节课《什么是店长笔记》结束之后,小伙伴们纷纷留言给我,说这节课蛮有收获。 首先对店长笔记有了新的认识,发...
    遇见自然阅读 884评论 6 6