机器学习200小时计划-001-统计学基础

    最近有幸和木东居士组建的学习小组一起学习机器学习,在此十分感谢居士提供的学习机会,也希望大家有机会加入居士的学习小组一块学习(可添加居士个人微信:mdjs91)。

图1.1 这不是机器学习

    来自Coursera经典机器学习课程的定义为"Machine learning is the science of getting computers to act without being explicitly programmed." 也就是说机器学习是一个不用明确告诉它干啥,计算机可以自行工作的科学。广义上来说,机器学习是包括了传统的数据分析还包括了现在比较火的深度学习等。

图1.2 机器学习三要素:数学,计算机和专业知识

    机器学习的基础是统计(数学)和编程(计算机科学),在掌握一门编程语言之前,我们首先要熟悉一些统计学的概念和方法原理。


图1.3 统计理论基础框架,配图来自于《人人都会数据分析:从生活实例学统计》  

    集中趋势的描述指标的汇总如下表:

表1.1 集中趋势的描述指标

    离散趋势的描述指标汇总如下:

表1.2 离散趋势的描述指标

    根据数据连续性的不同,数据可以分为离散型数据和连续型数据。同样,事件发生结果的对应数据既可能是离散型数据,也可能是连续型数据。因此,事件结果所对应的概率分布因为结果对应数据的不同也被分为连续型概率分布和离散型概率分布。

    离散型概率分布的种类有很多,比较常见的有二项分布、多项分布、超几何分布和泊松分布。

表1.3 离散型概率分布

连续型概率分布对应的函数被称为概率密度函数。常用的连续型概率分布有指数分布、均匀分布和正态分布。

表1.4 连续性概率分布

正态分布曲线的形态是一个倒置的钟形,中间是单峰,两边逐渐平缓,但不是所有的单峰分布都是正态分布,这些分布与正态分布的差异在于峰度与偏度的差异。峰度系数和单峰分布形态之间的关系为:当峰度系数等于 3 时,代表分布曲线是扁平程度适中的常峰态;当峰度系数小于3时,代表分布曲线是低峰态;当峰度系数大于3时,代表分布曲线是尖峰态。正态分布的峰形是模板峰形,也就是常峰态,它的峰度系数等于3,其他分布都是与正态分布进行比较的。描述分布状态的另一个指标是偏度系数。偏度系数又被称为偏斜系数,它能够帮助分析者判断数据集合的分布形态是否对称。如果数据集合是对称分布的(例如正态分布),那么它的均值、中位数和众数将会重合,且在这三个数值的两侧,其他所有的数值完全以对称的方式左右分布。如果数据集合的分布不对称,那么均值、中位数和众数必定分处在不同的位置,此时,若以均值为参照点,如图2-23所示,要么位于均值左侧的数据较多,长尾拖在右侧,称之为右偏分布;要么位于均值右侧的数据较多,长尾拖在左侧,称之为左偏分布。考虑到所有数据与均值之间的离差和总是等于零,因此,当均值左侧的数据较多时,均值的右侧必定存在数值较大的“离群”(极端)数值;同理,当均值右侧的数据较多时,均值的左侧必定存在数值较小的“离群”(极端)数值。偏度系数与分布形态的关系可以表述为:当偏度系数等于0时,称之为对称分布;当偏度系数小于0时,为之为左偏分布,长尾拖在左边;当偏度系数大于0时,称之为右偏分布,长尾拖在右边。

表1.5 峰度和偏度
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容