写给大数据开发初学者的话 | 附教程


公众号开了快一年了,名字叫学一学大数据。但是一直没有分享关于大数据的文章,如是就抽出时间来给大家分享下大数据整理的技术路线及生态全景。

导读
  • 第一章:初识Hadoop

  • 第二章:更高效的WordCount

  • 第三章:把别处的数据搞到Hadoop上

  • 第四章:把Hadoop上的数据搞到别处去

  • 第五章:快一点吧,我的SQL

  • 第六章:一夫多妻制

  • 第七章:越来越多的分析任务

  • 第八章:我的数据要实时

  • 第九章:我的数据要对外

  • 第十章:牛逼高大上的机器学习

先扯一下大数据的4V特征:
  • 数据量大,TB->PB

  • 数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;

  • 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;

  • 处理时效性高,海量数据的处理需求不再局限在离线计算当中。

现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:

  • 文件存储:Hadoop HDFS、Tachyon、KFS

  • 离线计算:Hadoop MapReduce、Spark

  • 流式、实时计算:Storm、Spark Streaming、S4、Heron

  • K-V、NOSQL数据库:HBase、Redis、MongoDB

  • 资源管理:YARN、Mesos

  • 日志收集:Flume、Scribe、Logstash、Kibana

  • 消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

  • 查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

  • 分布式协调服务:Zookeeper

  • 集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

  • 数据挖掘、机器学习:Mahout、Spark MLLib

  • 数据同步:Sqoop

  • 任务调度:Oozie
    ……

眼花了吧,上面的有30多种吧,别说精通了,全部都会使用的,估计也没几个。

就我个人而言,主要经验是在第二个方向(开发/设计/架构),且听听我的建议吧。



第一章:初识Hadoop


1.1 学会百度与Google

不论遇到什么问题,先试试搜索并自己解决。

Google首选,翻不过去的,就用百度吧。

1.2 参考资料首选官方文档

特别是对于入门来说,官方文档永远是首选文档。

相信搞这块的大多是文化人,英文凑合就行,实在看不下去的,请参考第一步。

1.3 先让Hadoop跑起来

Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚以下是什么:

  • Hadoop 1.0、Hadoop 2.0

  • MapReduce、HDFS

  • NameNode、DataNode

  • JobTracker、TaskTracker

  • Yarn、ResourceManager、NodeManager

自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。

建议先使用安装包命令行安装,不要使用管理工具安装。

另外:Hadoop1.0知道它就行了,现在都用Hadoop 2.0.

1.4 试试使用Hadoop

  • HDFS目录操作命令;

  • 上传、下载文件命令;

  • 提交运行MapReduce示例程序;

打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。

知道Hadoop的系统日志在哪里。

1.5 你该了解它们的原理了

  • MapReduce:如何分而治之;

  • HDFS:数据到底在哪里,什么是副本;

  • Yarn到底是什么,它能干什么;

  • NameNode到底在干些什么;

  • ResourceManager到底在干些什么;

1.6 自己写一个MapReduce程序

请仿照WordCount例子,自己写一个(照抄也行)WordCount程序,打包并提交到Hadoop运行。

你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。

如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。

第二章:更高效的WordCount


2.1 学点SQL吧

  • 你知道数据库吗?你会写SQL吗?

  • 如果不会,请学点SQL吧。

2.2 SQL版WordCount

在1.6中,你写(或者抄)的WordCount一共有几行代码?

给你看看我的:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,我这一句就搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

2.3 SQL On Hadoop之Hive

什么是Hive?官方给的解释是:

The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

为什么说Hive是数据仓库工具,而不是数据库工具呢?有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

2.4 安装配置Hive

请参考1.1 和 1.2 完成Hive的安装配置。可以正常进入Hive命令行。

2.5 试试使用Hive

请参考1.1 和 1.2 ,在Hive中创建wordcount表,并运行2.2中的SQL语句。

在Hadoop WEB界面中找到刚才运行的SQL任务。

看SQL查询结果是否和1.4中MapReduce中的结果一致。

2.6 Hive是怎么工作的

明明写的是SQL,为什么Hadoop WEB界面中看到的是MapReduce任务?

2.7 学会Hive的基本命令

  • 创建、删除表;

  • 加载数据到表;

  • 下载Hive表的数据;

请参考1.2,学习更多关于Hive的语法和命令。

如果你已经按照《写给大数据开发初学者的话》中第一章和第二章的流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

  • 0和Hadoop2.0的区别;

  • MapReduce的原理(还是那个经典的题目,一个10G大小的文件,给定1G大小的内存,如何使用Java程序统计出现次数最多的10个单词及次数);

  • HDFS读写数据的流程;向HDFS中PUT数据;从HDFS中下载数据;

  • 自己会写简单的MapReduce程序,运行出现问题,知道在哪里查看日志;

  • 会写简单的SELECT、WHERE、GROUP BY等SQL语句;

  • Hive SQL转换成MapReduce的大致流程;

  • Hive中常见的语句:创建表、删除表、往表中加载数据、分区、将表中数据下载到本地;


从上面的学习,你已经了解到,HDFS是Hadoop提供的分布式存储框架,它可以用来存储海量数据,MapReduce是Hadoop提供的分布式计算框架,它可以用来统计和分析HDFS上的海量数据,而Hive则是SQL On Hadoop,Hive提供了SQL接口,开发人员只需要编写简单易上手的SQL语句,Hive负责把SQL翻译成MapReduce,提交运行。

此时,你的”大数据平台”是这样的:

那么问题来了,海量数据如何到HDFS上呢?


第三章:把别处的数据搞到Hadoop上



此处也可以叫做数据采集,把各个数据源的数据采集到Hadoop上。

3.1 HDFS PUT命令

这个在前面你应该已经使用过了。

put命令在实际环境中也比较常用,通常配合shell、python等脚本语言来使用。

建议熟练掌握。

3.2 HDFS API

HDFS提供了写数据的API,自己用编程语言将数据写入HDFS,put命令本身也是使用API。

实际环境中一般自己较少编写程序使用API来写数据到HDFS,通常都是使用其他框架封装好的方法。比如:Hive中的INSERT语句,Spark中的saveAsTextfile等。

建议了解原理,会写Demo。

3.3 Sqoop

Sqoop是一个主要用于Hadoop/Hive与传统关系型数据库Oracle/MySQL/SQLServer等之间进行数据交换的开源框架。

就像Hive把SQL翻译成MapReduce一样,Sqoop把你指定的参数翻译成MapReduce,提交到Hadoop运行,完成Hadoop与其他数据库之间的数据交换。

自己下载和配置Sqoop(建议先使用Sqoop1,Sqoop2比较复杂)。

了解Sqoop常用的配置参数和方法。

  • 使用Sqoop完成从MySQL同步数据到HDFS;

  • 使用Sqoop完成从MySQL同步数据到Hive表;

PS:如果后续选型确定使用Sqoop作为数据交换工具,那么建议熟练掌握,否则,了解和会用Demo即可。

3.4 Flume

Flume是一个分布式的海量日志采集和传输框架,因为“采集和传输框架”,所以它并不适合关系型数据库的数据采集和传输。

Flume可以实时的从网络协议、消息系统、文件系统采集日志,并传输到HDFS上。

因此,如果你的业务有这些数据源的数据,并且需要实时的采集,那么就应该考虑使用Flume。

下载和配置Flume。

使用Flume监控一个不断追加数据的文件,并将数据传输到HDFS;

PS:Flume的配置和使用较为复杂,如果你没有足够的兴趣和耐心,可以先跳过Flume。

3.5 阿里开源的DataX

之所以介绍这个,是因为我们公司目前使用的Hadoop与关系型数据库数据交换的工具,就是之前基于DataX开发的,非常好用。

可以参考我的博文《异构数据源海量数据交换工具-Taobao DataX 下载和使用》。

现在DataX已经是3.0版本,支持很多数据源。

你也可以在其之上做二次开发。

PS:有兴趣的可以研究和使用一下,对比一下它与Sqoop。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:


第四章:把Hadoop上的数据搞到别处去



前面介绍了如何把数据源的数据采集到Hadoop上,数据到Hadoop上之后,便可以使用Hive和MapReduce进行分析了。那么接下来的问题是,分析完的结果如何从Hadoop上同步到其他系统和应用中去呢?

其实,此处的方法和第三章基本一致的。

4.1 HDFS GET命令

把HDFS上的文件GET到本地。需要熟练掌握。

4.2 HDFS API

同3.2.

4.3 Sqoop

同3.3.

  • 使用Sqoop完成将HDFS上的文件同步到MySQL;

  • 使用Sqoop完成将Hive表中的数据同步到MySQL;

4.4 DataX

同3.5.

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

如果你已经按照《写给大数据开发初学者的话2》中第三章和第四章的流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

  • 知道如何把已有的数据采集到HDFS上,包括离线采集和实时采集;

  • 你已经知道sqoop(或者还有DataX)是HDFS和其他数据源之间的数据交换工具;

  • 你已经知道flume可以用作实时的日志采集。

从前面的学习,对于大数据平台,你已经掌握的不少的知识和技能,搭建Hadoop集群,把数据采集到Hadoop上,使用Hive和MapReduce来分析数据,把分析结果同步到其他数据源。

接下来的问题来了,Hive使用的越来越多,你会发现很多不爽的地方,特别是速度慢,大多情况下,明明我的数据量很小,它都要申请资源,启动MapReduce来执行。


第五章:快一点吧,我的SQL



其实大家都已经发现Hive后台使用MapReduce作为执行引擎,实在是有点慢。

因此SQL On Hadoop的框架越来越多,按我的了解,最常用的按照流行度依次为SparkSQL、Impala和Presto.

这三种框架基于半内存或者全内存,提供了SQL接口来快速查询分析Hadoop上的数据。关于三者的比较,请参考1.1.

我们目前使用的是SparkSQL,至于为什么用SparkSQL,原因大概有以下吧:

  • 使用Spark还做了其他事情,不想引入过多的框架;

  • Impala对内存的需求太大,没有过多资源部署;

5.1 关于Spark和SparkSQL

  • 什么是Spark,什么是SparkSQL。

  • Spark有的核心概念及名词解释。

  • SparkSQL和Spark是什么关系,SparkSQL和Hive是什么关系。

  • SparkSQL为什么比Hive跑的快。

5.2 如何部署和运行SparkSQL

  • Spark有哪些部署模式?

  • 如何在Yarn上运行SparkSQL?

  • 使用SparkSQL查询Hive中的表。

PS: Spark不是一门短时间内就能掌握的技术,因此建议在了解了Spark之后,可以先从SparkSQL入手,循序渐进。

关于Spark和SparkSQL,可参考 http://lxw1234.com/archives/category/spark

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

第六章:一夫多妻制


请不要被这个名字所诱惑。其实我想说的是数据的一次采集、多次消费。

在实际业务场景下,特别是对于一些监控日志,想即时的从日志中了解一些指标(关于实时计算,后面章节会有介绍),这时候,从HDFS上分析就太慢了,尽管是通过Flume采集的,但Flume也不能间隔很短就往HDFS上滚动文件,这样会导致小文件特别多。

为了满足数据的一次采集、多次消费的需求,这里要说的便是Kafka。

6.1 关于Kafka

什么是Kafka?

Kafka的核心概念及名词解释。

6.2 如何部署和使用Kafka

使用单机部署Kafka,并成功运行自带的生产者和消费者例子。

使用Java程序自己编写并运行生产者和消费者程序。

Flume和Kafka的集成,使用Flume监控日志,并将日志数据实时发送至Kafka。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

这时,使用Flume采集的数据,不是直接到HDFS上,而是先到Kafka,Kafka中的数据可以由多个消费者同时消费,其中一个消费者,就是将数据同步到HDFS。

如果你已经按照《写给大数据开发初学者的话3》中第五章和第六章的流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

  • 为什么Spark比MapReduce快。

  • 使用SparkSQL代替Hive,更快的运行SQL。

  • 使用Kafka完成数据的一次收集,多次消费架构。

  • 自己可以写程序完成Kafka的生产者和消费者。

从前面的学习,你已经掌握了大数据平台中的数据采集、数据存储和计算、数据交换等大部分技能,而这其中的每一步,都需要一个任务(程序)来完成,各个任务之间又存在一定的依赖性,比如,必须等数据采集任务成功完成后,数据计算任务才能开始运行。如果一个任务执行失败,需要给开发运维人员发送告警,同时需要提供完整的日志来方便查错。

第七章:越来越多的分析任务


不仅仅是分析任务,数据采集、数据交换同样是一个个的任务。这些任务中,有的是定时触发,有点则需要依赖其他任务来触发。当平台中有几百上千个任务需要维护和运行时候,仅仅靠crontab远远不够了,这时便需要一个调度监控系统来完成这件事。调度监控系统是整个数据平台的中枢系统,类似于AppMaster,负责分配和监控任务。

7.1 Apache Oozie

1. Oozie是什么?有哪些功能?
2. Oozie可以调度哪些类型的任务(程序)?
3. Oozie可以支持哪些任务触发方式?
4.  安装配置Oozie。

7.2 其他开源的任务调度系统

  • Azkaban:https://azkaban.github.io/

  • light-task-scheduler:https://github.com/ltsopensource/light-task-scheduler

  • Zeus:https://github.com/alibaba/zeus

  • 等等……

另外,我这边是之前单独开发的任务调度与监控系统,具体请参考《大数据平台任务调度与监控系统》.

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:


第八章:我的数据要实时


在第六章介绍Kafka的时候提到了一些需要实时指标的业务场景,实时基本可以分为绝对实时和准实时,绝对实时的延迟要求一般在毫秒级,准实时的延迟要求一般在秒、分钟级。对于需要绝对实时的业务场景,用的比较多的是Storm,对于其他准实时的业务场景,可以是Storm,也可以是Spark Streaming。当然,如果可以的话,也可以自己写程序来做。

8.1 Storm

  1. 什么是Storm?有哪些可能的应用场景?

  2. Storm由哪些核心组件构成,各自担任什么角色?

  3. Storm的简单安装和部署。

  4. 自己编写Demo程序,使用Storm完成实时数据流计算。

8.2 Spark Streaming

  1. 什么是Spark Streaming,它和Spark是什么关系?

  2. Spark Streaming和Storm比较,各有什么优缺点?

  3. 使用Kafka + Spark Streaming,完成实时计算的Demo程序。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

至此,你的大数据平台底层架构已经成型了,其中包括了数据采集、数据存储与计算(离线和实时)、数据同步、任务调度与监控这几大模块。接下来是时候考虑如何更好的对外提供数据了。

第九章:我的数据要对外


通常对外(业务)提供数据访问,大体上包含以下方面:

  • 离线:比如,每天将前一天的数据提供到指定的数据源(DB、FILE、FTP)等;离线数据的提供可以采用Sqoop、DataX等离线数据交换工具。

  • 实时:比如,在线网站的推荐系统,需要实时从数据平台中获取给用户的推荐数据,这种要求延时非常低(50毫秒以内)。

  • 根据延时要求和实时数据的查询需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

  • OLAP分析:OLAP除了要求底层的数据模型比较规范,另外,对查询的响应速度要求也越来越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的数据模型比较规模,那么Kylin是最好的选择。

  • 即席查询:即席查询的数据比较随意,一般很难建立通用的数据模型,因此可能的方案有:Impala、Presto、SparkSQL。

这么多比较成熟的框架和方案,需要结合自己的业务需求及数据平台技术架构,选择合适的。原则只有一个:越简单越稳定的,就是最好的。

如果你已经掌握了如何很好的对外(业务)提供数据,那么你的“大数据平台”应该是这样的:


第十章:牛逼高大上的机器学习



关于这块,我这个门外汉也只能是简单介绍一下了。数学专业毕业的我非常惭愧,很后悔当时没有好好学数学。

在我们的业务中,遇到的能用机器学习解决的问题大概这么三类:

  • 分类问题:包括二分类和多分类,二分类就是解决了预测的问题,就像预测一封邮件是否垃圾邮件;多分类解决的是文本的分类;

  • 聚类问题:从用户搜索过的关键词,对用户进行大概的归类。

  • 推荐问题:根据用户的历史浏览和点击行为进行相关推荐。

大多数行业,使用机器学习解决的,也就是这几类问题。

入门学习线路:

  • 数学基础;

  • 机器学习实战(Machine Learning in Action),懂Python最好;

  • SparkMlLib提供了一些封装好的算法,以及特征处理、特征选择的方法。

机器学习确实牛逼高大上,也是我学习的目标。

那么,可以把机器学习部分也加进你的“大数据平台”了。

大数据教程在公众号内回复:110

  感谢观看!

公众号内直接回复“119”获取java架构师资料  

 回复“110”获取大数据全套教程

回复“3306”获取最新python教程

 回复"10086"获取C#全套教程

   回复"小程序"获取100套小程序源码

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容

  • 第一章:初识Hadoop 第二章:更高效的WordCount 第三章:把别处的数据搞到Hadoop上 第四章:把H...
    大数据05阅读 1,225评论 1 28
  • 我想要的是一段正常,甜蜜的恋爱关系,一个很疼爱我的男朋友,我俩有非常高的默契,在一起总是说说笑笑,吵架也没关系,他...
    菲菲的心窝阅读 252评论 0 0
  • 好的产品: 1.不要太崇尚营销推广。如果是做单店,一个有实力、选址靠谱的店,靠自然流量就能活下来。当然,前提是定价...
    Yoga李赟阅读 86评论 3 6
  • 2017年12月10 宁宁+venessa 香蜜小小书语者 D45 今天我跟妈妈一起合作了逃家小兔,还听桐桐妈妈讲...
    浅浅依然阅读 166评论 0 0
  • 坐在地铁上,每个人在自己的小世界里。上班一个星期了。工作慢慢的展开,四个人的公司,一个人的办公室,还有对工作还有老...
    米亚玛雅阅读 165评论 0 0