在m1 mac上安装tensorflow

参考:https://github.com/apple/tensorflow_macos/issues/3

1.安装arm64的miniconda:
https://conda-forge.org/blog/posts/2020-10-29-macos-arm64/
进入网站后点击这里:

figure1

将下载下来的.sh文件拖拽到终端里,将会自动安装miniconda。
如果有遇到permission denied的情况,就先使用cd命令进入到文件所在的文件夹,再将.sh文件拖拽到终端里

2.下载为m1优化的tensorflow及其插件
https://github.com/apple/tensorflow_macos
点击INSTALLATION下的releases

figure2

下载asserts下的.tar.gz文件
figure3

3.创建一个新的conda python环境
在终端输入如下命令(envname是环境的名称):

conda create --name envname python=3.8

创建好环境后使用以下命令切换到刚刚创建的环境中:

source activate envname

4.安装tensorflow
运行如下命令:

# 这里...替换成步骤2中安装的文件的路径(下同)
libs="/Users/.../Downloads/tensorflow_macos/arm64/"

# 将envname换成你自己创建环境时起的名字
env="/Users/.../miniforge3/envs/envname"

# 运行以下代码
conda upgrade -c conda-forge pip setuptools cached-property six

pip install --upgrade -t "$env/lib/python3.8/site-packages/" --no-dependencies --force "$libs/grpcio-1.33.2-cp38-cp38-macosx_11_0_arm64.whl"

pip install --upgrade -t "$env/lib/python3.8/site-packages/" --no-dependencies --force "$libs/h5py-2.10.0-cp38-cp38-macosx_11_0_arm64.whl"

pip install --upgrade -t "$env/lib/python3.8/site-packages/" --no-dependencies --force "$libs/tensorflow_addons-0.11.2+mlcompute-cp38-cp38-macosx_11_0_arm64.whl"

conda install -c conda-forge -y absl-py
conda install -c conda-forge -y astunparse
conda install -c conda-forge -y gast
conda install -c conda-forge -y opt_einsum
conda install -c conda-forge -y termcolor
conda install -c conda-forge -y typing_extensions
conda install -c conda-forge -y wheel
conda install -c conda-forge -y typeguard

pip install tensorboard

pip install wrapt flatbuffers tensorflow_estimator google_pasta keras_preprocessing protobuf

#这里要查看你下载的whl文件的版本,如何查看版本见下图
pip install --upgrade -t "$env/lib/python3.8/site-packages/" --no-dependencies --force "$libs/tensorflow_macos-0.1a1-cp38-cp38-macosx_11_0_arm64.whl"

查看whl文件的版本:
打开步骤2中下载的tensorflow_macos文件夹,在里面的arm64文件夹下有一个tensorflow_macos-(版本号)-...文件


figure4

根据不同的版本号修改上面的命令就好啦~
若提示Successfully installed tensorflow-macos-...则安装成功。
可以使用__version__查看tensorflow的版本


figure5
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容