【Spark】弹性分布式数据集RDD概述

弹性分布数据集RDD

RDD(Resilient Distributed Dataset)是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。这对于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。

你将RDD理解为一个大的集合,将所有数据都加载到内存中,方便进行多次重用。第一,它是分布式的,可以分布在多台机器上,进行计算。第二,它是弹性的,在计算处理过程中,机器的内存不够时,它会和硬盘进行数据交换,某种程度上会减低性能,但是可以确保计算得以继续进行。

RDD特性

RDD是分布式只读且已分区集合对象。这些集合是弹性的,如果数据集一部分丢失,则可以对它们进行重建。具有自动容错、位置感知调度和可伸缩性,而容错性是最难实现的,大多数分布式数据集的容错性有两种方式:数据检查点和记录数据的更新。对于大规模数据分析系统,数据检查点操作成本很高,主要原因是大规模数据在服务器之间的传输带来的各方面的问题,相比记录数据的更新,RDD 也只支持粗粒度的转换,也就是记录如何从其它 RDD 转换而来(即 Lineage),以便恢复丢失的分区。
其特性为:

  1. 数据存储结构不可变
  1. 支持跨集群的分布式数据操作
  2. 可对数据记录按key进行分区
  3. 提供了粗粒度的转换操作
  4. 数据存储在内存中,保证了低延迟性

RDD的好处

  • RDD只能从持久存储或通过Transformations操作产生,相比于分布式共享内存(DSM)可以更高效实现容错,对于丢失部分数据分区只需根据它的lineage就可重新计算出来,而不需要做特定的Checkpoint。
  • RDD的不变性,可以实现类Hadoop MapReduce的推测式执行。
  • RDD的数据分区特性,可以通过数据的本地性来提高性能,这与Hadoop MapReduce是一样的。
  • RDD都是可序列化的,在内存不足时可自动降级为磁盘存储,把RDD存储于磁盘上,这时性能会有大的下降但不会差于现在的MapReduce。

RDD编程接口

对于RDD,有两种类型的动作,一种是Transformation,一种是Action。它们本质区别是:

Transformation返回值还是一个RDD。它使用了链式调用的设计模式,对一个RDD进行计算后,变换成另外一个RDD,然后这个RDD又可以进行另外一次转换。这个过程是分布式的
Action返回值不是一个RDD。它要么是一个Scala的普通集合,要么是一个值,要么是空,最终或返回到Driver程序,或把RDD写入到文件系统中

Transformations转换操作,返回值还是一个 RDD,如 map、 filter、 union;
Actions行动操作,返回结果或把RDD持久化起来,如 count、 collect、 save。



RDD依赖关系

不同的操作依据其特性,可能会产生不同的依赖,RDD之间的依赖关系有以下两种:

  • 窄依赖(Narrow Dependencies)
    一个父RDD分区最多被一个子RDD分区引用,表现为一个父RDD的分区;
    对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区,如map、filter、union等操作则产生窄依赖;
  • 宽依赖(Wide Dependencies)
    一个子RDD的分区依赖于父RDD的多个分区或所有分区,也就是说存在一个父RDD的一个分区对应一个子RDD的多个分区,如groupByKey等操作则产生宽依赖操作;

下图中,蓝色实心方框代表一个partition,蓝边矩形框代表一个RDD:


Stage DAG

Spark提交Job之后会把Job生成多个Stage,多个Stage之间是有依赖的,Stage之间的依赖关系就构成了DAG(有向无环图)。
对于窄依赖,Spark会尽量多地将RDD转换放在同一个Stage中;而对于宽依赖,但大多数时候是shuffle操作,因此Spark会将此Stage定义为ShuffleMapStage,以便于向MapOutputTracker注册shuffle操作。Spark通常将shuffle操作定义为stage的边界。


RDD数据存储管理

RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的。逻辑上RDD的每个分区叫一个Partition。
在Spark的执行过程中,RDD经历一个个的Transfomation算子之后,最后通过Action算子进行触发操作。 逻辑上每经历一次变换,就会将RDD转换为一个新的RDD,RDD之间通过Lineage产生依赖关系,这个关系在容错中有很重要的作用。变换的输入和输出都是RDD。 RDD会被划分成很多的分区分布到集群的多个节点中。分区是个逻辑概念,变换前后的新旧分区在物理上可能是同一块内存存储。 这是很重要的优化,以防止函数式数据不变性(immutable)导致的内存需求无限扩张。有些RDD是计算的中间结果,其分区并不一定有相应的内存或磁盘数据与之对应,如果要迭代使用数据,可以调cache()函数缓存数据。



上图中,RDD1含有5个分区(p1、 p2、 p3、 p4、 p5),分别存储在4个节点(Node1、 node2、 Node3、 Node4)中。RDD2含有3个分区(p1、 p2、 p3),分布在3个节点(Node1、 Node2、 Node3)中。

在物理上,RDD对象实质上是一个元数据结构,存储着Block、 Node等的映射关系,以及其他的元数据信息。一个RDD就是一组分区,在物理数据存储上,RDD的每个分区对应的就是一个Block,Block可以存储在内存,当内存不够时可以存储到磁盘上。
每个Block中存储着RDD所有数据项的一个子集,暴露给用户的可以是一个Block的迭代器(例如,用户可以通过mapPartitions获得分区迭代器进行操作),也可以就是一个数据项(例如,通过map函数对每个数据项并行计算)。本书会在后面章节具体介绍数据管理的底层实现细节。
如果是从HDFS等外部存储作为输入数据源,数据按照HDFS中的数据分布策略进行数据分区,HDFS中的一个Block对应Spark的一个分区。同时Spark支持重分区,数据通过Spark默认的或者用户自定义的分区器决定数据块分布在哪些节点。例如,支持Hash分区(按照数据项的Key值取Hash值,Hash值相同的元素放入同一个分区之内)和Range分区(将属于同一数据范围的数据放入同一分区)等分区策略。

转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
百度搜索jasonding1354进入我的博客主页

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,165评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,503评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,295评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,589评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,439评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,342评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,749评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,397评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,700评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,740评论 2 313
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,523评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,364评论 3 314
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,755评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,024评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,297评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,721评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,918评论 2 336

推荐阅读更多精彩内容