数学教学(5)——由九九乘法表谈“定位”

数学老师在面对学生们问题时,应持鼓励的态度,并适当给予启发,哪怕这个问题从逻辑上来讲是“错误”或“多此一举”的.

今天在课堂上有个同学提出了这样一个问题:

他在计算和大于10的一位数加法时,尤其是3+9,4+9,5+9,6+9,8+9,7+8,7+9时,经常要掰着手指算,不然容易出错,后来他发现这些数的个位数与这些数乘积的十位数一致,如下图:

不过他又很快否定了自己,因为5×7=35,5+7=12……是不符合这个规律的。

他说:“刚发现时我感到特别的兴奋,可找到反例后又特别沮丧,感觉没有什么用。”

我起身为他鼓掌,对他说:“你做的很好!虽然没有发现统一的规律,但你的思考过程无形中给你的思维带来了提高。况且很多数学家们研究理论来没有一帆风顺,一蹴而就的。数学的美就在于它的未知性!”

我接着讲道:“刚才这位同学提到了数学上的一个有关‘定位’的问题,我们今天就来谈谈这个问题。比如给你两个乘数,你能定出它们乘积的位数吗?给你两个数相除,能定出商的位数吗?”

定义位数

将一个数用科学计数法表示出来,

科学计数法

其中n是整数,1≤x<10,把a称为n位数.

比如:85.023、0.0012、0.9071、520131.4的位数如下:

几个数字的位数展示

同学们了解了这些后,开始讨论起来,他们很聪明,找几个实例来研究:

(1)250×4=1000

250是3位数,4是1位数,1000是4位数;3+1=4

(2)0.0375×16=0.6

0.0375是-1位数,16是2位数,0.6是0位数;(-1)+2-1=0

(3)0.0025×800=2

0.0025是-2位数,800是3位数,2是1位数;(-2)+3=1

(4)520×1314=683280

520是3位数,1314是4位数,683280是6位数;3+4-1=6

(5)120×111=13320

120是3位数,111是3位数,13320是5位数;3+3-1=5

(6)75×10000=750000

75是2位数,10000是5位数,750000是6位数;2+5-1=6

……

他们发现若A×B=C,C的位数有两种可能,要么是A和B的位数之和,要么是A和B的位数之和少1.

我非常赞许的看着他们,又接着指引他们:“你们将这些实例的数字写在表格里,只要数的部分,就是科学计数法中的x,再观察下有没有规律.”

于是他们制成了下面的表格:

部分结果

这样放到表格中后,有很多同学已经发现了规律:

当C的数字比A或B的数字小时,C的位数等于A和B的位数之和;否则,C的位数等于A和B的位数之和减1.

进行到这里,我发现孩子们满脸的兴奋和有成就感,课堂气氛异常活跃。这时,我问道:“这个规律能当作结论来用吗?”

沉寂了几秒钟后,一位同学举手说:“不能!”我问他为什么,他回答道:“因为这是找到的实际例子概括总结得到的,不代表所有的乘法。要想用,得证明才行!”

我很赞许的点头,接着在黑板上和他们一起完成了以下的证明过程:

证明过程

兴奋之余,我接着启发他们:“你们能根据乘法和除法运算的关系推导出除法里商的位数的规律吗?”

这个问题显然难不住他们,他们根据上面的规律逆推出了下面结论:

如果被除数的数字比除数数字小,则商的位数等于被除数位数-除数位数;否则,等于被除数位数-除数位数+1

而且在推演除法时不用计算就可以知道商的位数,而乘法得计算。比如:

3.14÷0.0025 ,因为3.14>2.5,商的位数是1-(-2)+1=4位.

13.14÷0.0052,因为1.314<5.2,商的位数是2-(-2)=4位.

……

他们还通过观察,总结出快速判断一个数位数的方法,不用转化成科学计数法,一个数如果≥1,小数点前有几位,就是几位数;如果小于1,小数点后有几个0就是负几位数。

总有些爱“搞事”的孩子,这不,一个学生提出问题:“老师,研究这个东西有啥用啊?”我回答他:“你的问题提的很好,把我问住了,答案需要你自己去寻找,或许你将来在数学应用上有一番作为!不过,有时候无用方为大用。”

说到这里,下课铃声响了,我们一起完成了一次“提出问题,举例子,找出规律,证明规律”的数学过程,希望孩子们都能在今后学习数学的路上能多些思考。

虽然考试考不到 ̄^ ̄゜

难度导读
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容