1.3求根之牛顿迭代法

目录

[TOC]

前言

今天我们讲的是具有收敛速度快,能求重根的解方程之法,牛顿迭代法。

(一)牛顿迭代法的分析

1.定义

迭代公式如下:
x_{k+1} = x_k-\frac{f(x_k)}{f\prime(x_k)} (k=0,1,2...)
迭代函数是:
\varphi(x) = x_k-\frac{f(x_k)}{f\prime(x_k)}
由于\varphi(x)= x_k-\frac{f(x_k)}{f\prime(x_k)} 与原方程f(x)=0 等价。

k\rightarrow \infty 时,x_k就是f(x)=0的近似解。

该方法称为牛顿迭代方法。

2.条件

  1. f(x)函数是连续可导函数。

  2. f(x)在局部收敛,当f(x) \times f\prime\prime(x)>0时,局部收敛。

    注意:牛顿迭代法的局部收敛性,很依赖于初始值的取法。

    也就是说,初始值的选取,决定该区域的收敛性。

3.思想

其总思想还是迭代的方法,只是其迭代公式是由泰勒展开得来的,其利用的是:用切线方程与x轴的交点来近似f(x)与x轴的交点。

4.误差

任然用的是迭代法的误差,前后两次x的差的绝对值与我们给的精度比较。

(二)代码实现

1.算法流程图

牛顿迭代法.jpg

2.源代码

feval()函数

def feval(string, a):
    """
        根据值来计算数学表达式。
    :param string: 含有x未知数的数学表达式
    :param a: 自变量x的具体数值
    :return:  数学表达式的计算结果
    """
    count = string.count("x")
    string = string.replace('x', '%f')
    t = (a, ) * count
    result = eval(string % t)
    return result

float_num()函数

def flaot_num(x, r):
    """
        处理保留几位小数点的函数,四舍五入法
    :param x: 原始数据
    :param r: 误差
    :return: 处理后的数据
    """
    # 处理小数点的位数
    r = str(r)
    if "." in r:
        dian = r.index(".")
        size = len(r[dian + 1:])
        result = round(x, size)
        return result
    elif "e" in r:
        dian = r.index("e")
        size = int(r[dian+2:])
        result = round(x, size)
        return result
    else:
        result = round(x, 0)
        return result

牛顿迭代法

"""
    牛顿迭代法,迭代的思想,不断逼近。
"""
# 求导数需要的库
import sympy as sp
from my_math.func_math import feval, flaot_num


def new_fun(expr, x0, r):
    """
        牛顿迭代法求解方程的根
    :param expr: 代函数表达式
    :param x0: 初始值
    :param r: 误差
    :return: 计算的结果值
    """
    x = sp.Symbol('x')
    k = 0
    # 一阶导与二阶导
    fx_1 = str(sp.diff(expr))
    fx_2 = str(sp.diff(fx_1))
    # 迭代公式
    y = "x-" + "("+expr + ")/(" + fx_1 + ")"

    # 判断收敛性
    if feval(expr, x0)*feval(fx_2, x0) <= 0:
        print("函数处于该点区域不收敛")
        result = None
    else:
        x1 = feval(y, x0)
        x2 = feval(y, x1)

        while abs(x2-x1) > r:
            x1 = feval(y, x2)
            x2 = feval(y, x1)
            k += 1
            print("次数:", k)
            print("x1:", x1)
            print("x2:", x2)

        result = flaot_num(x2, r)
        print("=" * 30)
        print("原始的数据是", x2)
        print("最后的结果是:", result)
    return result


if __name__ == '__main__':
    new_fun("x**4-4*x**2+4", 2, 10**-5)

(三)案例演示

1.求解:f(x)=x^3-x-1=0

误差:10^-5

图像分析(来确定初值)

01.png
02.png

取在1.5为初始值

运行结果:

03.png

2.求解:f(x)=x^2-115=0

误差:10^-5

图像分析(来确定初值)

04.png
05.png

取11为初始值。

运行结果:

06.png

3.求解:f(x)=x^3-x^2-x+1

误差:10^-5

图像分析(来确定初值)

07.png
08.png

取初始值为:1.6

运行结果:

09.png

4.求解:f(x)=x^4-4x^2+4=0

图像分析(来确定初值)

10.png
11.png

取初值是:0

运行结果:

12.png

我们换另一个点试试,取初始值为2

运行结果:

13.png

作者:Mark

日期:2019/02/19 周二

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343