高效压缩位图RoaringBitmap的原理与应用

目录

位图法简述

对于我们大数据工作者来说,海量数据的判重和基数统计是两个绕不开的基础问题。之前我已经讲了两种应用广泛的方法,即布隆过滤器HyperLogLog。虽然它们节省空间并且效率高,但也付出了一定的代价,即:

  • 只能插入元素,不能删除元素;
  • 不保证100%准确,总是存在误差。

这两个缺点可以说是所有概率性数据结构(probabilistic data structure)做出的trade-off,毕竟鱼与熊掌不可兼得嘛。

话说回来,有什么相对高效的能够保证绝对精确的方法呢?最朴素的思路是利用布隆过滤器和HyperLogLog的基础——位数组,也叫位图(bitmap)。不妨来看一道老生常谈的面试题:

给定含有40亿个不重复的位于[0, 232 - 1]区间内的整数的集合,如何快速判定某个数是否在该集合内?

显然,如果我们将这40亿个数原样存储下来,需要耗费高达14.9GB的内存,不可接受。所以我们可以用位图来存储,即第0个比特表示数字0,第1个比特表示数字1,以此类推。如果某个数位于原集合内,就将它对应的位图内的比特置为1,否则保持为0。这样就能很方便地查询得出结果了,仅仅需要占用512MB的内存,只有原来的不到3.4%。

由于位图的这个特性,它经常被作为索引用在数据库、查询引擎和搜索引擎中,并且位操作(如and求交集、or求并集)之间可以并行,效率更好。但是,位图也不是完美无缺的:不管业务中实际的元素基数有多少,它占用的内存空间都恒定不变。举个例子,如果上文题目中的集合只存储了0这一个元素,那么该位图只有最低位是1,其他位全为0,但仍然占用了512MB内存。数据越稀疏,空间浪费越严重。

为了解决位图不适应稀疏存储的问题,大佬们提出了多种算法对稀疏位图进行压缩,减少内存占用并提高效率。比较有代表性的有WAH、EWAH、Concise,以及RoaringBitmap。前三种算法都是基于行程长度编码(Run-length encoding, RLE)做压缩的,而RoaringBitmap算是它们的改进版,更加优秀,因此本文重点探讨它。

RoaringBitmap的思路

为了不用打那么多字,下文将RoaringBitmap简称为RBM。

RBM的历史并不长,它于2016年由S. Chambi、D. Lemire、O. Kaser等人在论文《Better bitmap performance with Roaring bitmaps》《Consistently faster and smaller compressed bitmaps with Roaring》中提出,官网在这里

RBM的主要思路是:将32位无符号整数按照高16位分桶,即最多可能有216=65536个桶,论文内称为container。存储数据时,按照数据的高16位找到container(找不到就会新建一个),再将低16位放入container中。也就是说,一个RBM就是很多container的集合。

为了方便理解,照搬论文中的示例图,如下所示。

图中示出了三个container:

  • 高16位为0000H的container,存储有前1000个62的倍数。
  • 高16位为0001H的container,存储有[216, 216+100)区间内的100个数。
  • 高16位为0002H的container,存储有[2×216, 3×216)区间内的所有偶数,共215个。

container是RBM新创造的概念,自然也是提高效率的核心。为了更高效地存储和查询数据,不同情况下会采用不同类型的container,下面深入讲解一下container的细节。

Container原理

一共有3种。

ArrayContainer

当桶内数据的基数不大于4096时,会采用它来存储,其本质上是一个unsigned short类型的有序数组。数组初始长度为4,随着数据的增多会自动扩容(但最大长度就是4096)。另外还维护有一个计数器,用来实时记录基数。

上图中的前两个container基数都没超过4096,所以均为ArrayContainer。

BitmapContainer

当桶内数据的基数大于4096时,会采用它来存储,其本质就是上一节讲过的普通位图,用长度固定为1024的unsigned long型数组表示,亦即位图的大小固定为216位(8KB)。它同样有一个计数器。

上图中的第三个container基数远远大于4096,所以要用BitmapContainer存储。

RunContainer

RunContainer在图中并未示出,初始的RBM实现中也没有它,而是在本节开头的第二篇论文中新加入的。它使用可变长度的unsigned short数组存储用行程长度编码(RLE)压缩后的数据。举个例子,连续的整数序列11, 12, 13, 14, 15, 27, 28, 29会被RLE压缩为两个二元组11, 4, 27, 2,表示11后面紧跟着4个连续递增的值,27后面跟着2个连续递增的值。

由此可见,RunContainer的压缩效果可好可坏。考虑极端情况:如果所有数据都是连续的,那么最终只需要4字节;如果所有数据都不连续(比如全是奇数或全是偶数),那么不仅不会压缩,还会膨胀成原来的两倍大。所以,RBM引入RunContainer是作为其他两种container的折衷方案。

下面来简要看看它们的复杂度和转换方法。

时空分析

增删改查的时间复杂度方面,BitmapContainer只涉及到位运算,显然为O(1)。而ArrayContainer和RunContainer都需要用二分查找在有序数组中定位元素,故为O(logN)。

空间占用(即序列化时写出的字节流长度)方面,BitmapContainer是恒定为8192B的。ArrayContainer的空间占用与基数(c)有关,为(2 + 2c)B;RunContainer的则与它存储的连续序列数(r)有关,为(2 + 4r)B。以上节图中的RBM为例,它一共存储了33868个unsigned int,只占用了10396个字节的空间,可以说是非常高效了。

Container的创建与转换

在创建一个新container时,如果只插入一个元素,RBM默认会用ArrayContainer来存储。如果插入的是元素序列的话,则会先根据上面的方法计算ArrayContainer和RunContainer的空间占用大小,并选择较小的那一种进行存储。

当ArrayContainer的容量超过4096后,会自动转成BitmapContainer存储。4096这个阈值很聪明,低于它时ArrayContainer比较省空间,高于它时BitmapContainer比较省空间。也就是说ArrayContainer存储稀疏数据,BitmapContainer存储稠密数据,可以最大限度地避免内存浪费。

RBM还可以通过调用特定的API(名为optimize)比较ArrayContainer/BitmapContainer与等价的RunContainer的内存占用情况,一旦RunContainer占用较小,就转换之。也就是说,上图例子中的第二个ArrayContainer可以转化为只有一个二元组0, 100的RunContainer,占用空间进一步下降到10200字节。

RBM的应用

官方提供了RBM的多种语言实现,Java、C/C++、Python、Go、C#等等一应俱全。Java版本的GitHub repo见这里。代码比较多,但思路很清晰,看官如果对位运算比较熟悉的话读起来不难,故本文就不再长篇大论地讲源码了。值得注意的几点如下:

  • 两个RBM做集合操作时,不同种类container之间位运算的处理方式,如ArrayContainer AND BitmapContainer,BitmapContainer OR RunContainer等;
  • 对64位整数的支持(32位有时会不够用哈);
  • 能够将RBM数据写到堆外,即内存映射;
  • 支持Kryo序列化方式。

RBM的应用范围极广,下面只简单列举几个有代表性的应用,并给出reference。

Lucene

为了加速搜索,Lucene会将常用的查询过滤条件产生的结果集缓存到内存中,方便复用,称为filter cache。结果集其实就是文档ID(整形数)的集合。从Lucene 5开始,使用了RBM优化过的文档ID集合RoaringDocIdSet作为filter cache,详情可以参见《Frame of Reference and Roaring Bitmaps》。该文除了介绍RBM外,还介绍了压缩倒排索引的Frame of Reference(FOR)编码,值得一读。

Spark

在Spark Core的MapStatus组件(用来跟踪ShuffleMapTask的输出结果块)中,利用了RBM来存储块是否非空的状态。今后会在Spark连载里讲到它,所以现在看看该类的源码就可以了,不难理解。

Greenplum

我司是Greenplum大户,虽然本鶸现在不负责数仓相关的事情了,但是偶尔还是要向GP提供一些数据。GP配合RoaringBitmap非常适合做海量用户的近实时画像,每个RBM代表一维标签即可,根据标签圈选用户也很方便。GP原生并未支持RBM类型数据,需要安装一个扩展插件,见这里。关于GP与RBM的整合与使用,有两篇不错的参考文章:

Redis

我们在Redis里经常使用位图存储数据(Redis原生以字符串的形式支持位图),当然也就会遇到稀疏位图浪费存储空间的问题。但要让Redis支持RBM,需要引入专门的module,项目地址见这里。它的设计思想与Java版RBM几乎相同,不再废话了。

The End

晚安咯。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容