使用Hive分析nginx日志 --正则表达式

1、环境:

Hadoop-2.7.3 + apache-hive-2.1.0-bin

2、使用Hive分析nginx日志,网站的访问日志部分内容为:

cat /home/hadoop/hivetestdata/nginx.txt

192.168.1.128 - - [09/Jan/2015:12:38:08 +0800] "GET /avatar/helloworld.png HTTP/1.1" 200 1521 "http://write.blog.linuxidc.net/postlist" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.131 Safari/537.36"

183.60.212.153 - - [19/Feb/2015:10:23:29 +0800] "GET /o2o/media.html?menu=3 HTTP/1.1" 200 16691 "-" "Mozilla/5.0 (compatible; baiduuSpider; +http://www.baiduu.com/search/spider.html)"

这条日志里面有九列,每列之间是用空格分割的,

每列的含义分别是客户端访问IP、用户标识、用户、访问时间、请求页面、请求状态、返回文件的大小、跳转来源、浏览器UA。

我们使用Hive中的正则表达式匹配这九列:

([^ ]*) ([^ ]*) ([^ ]*) (.∗) (\".*?\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\")

于此同时我们可以在Hive中指定解析文件的序列化和反序列化解析器(SerDe),并且在Hive中内置了一个org.apache.hadoop.hive.serde2.RegexSerDe正则解析器,我们可以直接使用它。

3、建表语句

CREATE TABLE logs

(

host STRING,

identity STRING,

username STRING,

time STRING,

request STRING,

status STRING,

size STRING,

referer STRING,

agent STRING

)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'

WITH SERDEPROPERTIES (

"input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\".*?\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\")",

"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"

)

STORED AS TEXTFILE;

4、加载数据:

load data local inpath '/home/hadoop/hivetestdata/nginx.txt' into table logs;

查询每小时的访问量超过100的IP地址:

select substring(time, 2, 14) datetime ,host, count(*) as count

from logs

group by substring(time, 2, 14), host

having count > 100

sort by datetime, count;

Hive编程指南 PDF 中文高清版  http://www.linuxidc.com/Linux/2015-01/111837.htm

基于Hadoop集群的Hive安装 http://www.linuxidc.com/Linux/2013-07/87952.htm

Hive内表和外表的区别 http://www.linuxidc.com/Linux/2013-07/87313.htm

Hadoop + Hive + Map +reduce 集群安装部署 http://www.linuxidc.com/Linux/2013-07/86959.htm

Hive本地独立模式安装 http://www.linuxidc.com/Linux/2013-06/86104.htm

Hive学习之WordCount单词统计 http://www.linuxidc.com/Linux/2013-04/82874.htm

Hive运行架构及配置部署 http://www.linuxidc.com/Linux/2014-08/105508.htm

Hive 的详细介绍:请点这里

Hive 的下载地址:请点这里

本篇文章来源于 Linux公社网站(www.linuxidc.com)  原文链接:http://www.linuxidc.com/Linux/2015-06/118603.htm

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容