深度学习简易入门

2017-07-06EETOP

作者 : jennyxia , 腾讯 MelonTeam 团队

深度学习是机器学习中的一个重要的方向,深度学习其实就是神经网络学习,这里“深度”就是说神经网络中众多的层。

那么深度学习是用来干嘛的呢?简单说,那就是...

分类

关于什么是机器学习的解释,Quora上有一个买菜大妈都能看的懂的回答。翻译一下就是,吃遍南山区所有芒果的大妈,自己总结出个大颜色黄的比较好吃,所以买芒果的时候,直接挑选了这种。那什么是机器学习呢,就是你告诉机器每一个芒果的特征(颜色,大小,软硬等),并且告诉机器其输出(好不好吃),剩下的就等机器去学习出一套规则,这些芒果就是你的训练集。而当你再丢芒果进去的时候,已然熟悉基本法的机器就会直接告诉你这个芒果好不好吃,这种能自动对输入的东西进行分类的机器,就叫做分类器。

分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本,人为标记上正确分类结果,然后用这些标记好的数据训练分类器,训练好的分类器就可以在新来的特征向量上工作了。

神经元

我们再来看看神经网络是怎么工作的。


最简单地把这两组特征向量分开的方法是什么呢?当然是在两组数据中间画一条竖直线,直线左边是-,右边是+,分类器就完成了。以后来了新的向量只要代入公式,h = ax + b ,凡是落在直线左边的都是-,落在右边的都是+。这是二维空间的分类,而当特征有很多种时,我们就要在n维空间做分类,大家可以想象一下,就是用一个n-1维超平面把n维空间一分为二,两边分属不同的两类,,这种分类器就叫做神经元,a是权值,a0是偏移。


这么一画是不是就很像人脑的神经元呀,我们就用这些神经元组成网络去学习训练集的数据,求出最优的权值(weights)和偏置(biases)以便最终正确地分类。

神经网络


上图就是一个简单神经网络的架构,网络中最左边的一层被称作输入层,其中的神经元被称为输入神经元(input neurons)。最右边的一层是输出层(output layer),包含的神经元被称为输出神经元(output neurons)。网络中间的一层被称作隐层(hidden layer),在一些网络中往往有多个隐层。我们可以看到,输入向量连到许多神经元上,这些神经元的输出又连到一堆神经元上,这一过程可以重复很多次。数值向量在不同神经元之间传导。

但是,我们刚刚分析了神经元,神经元的变换是完全的线形的,如果神经网络的每层都只是做线性变换,多层输入叠加后也还是线性变换。因为线性模型的表达能力不够,所以需要激活函数来引入非线性因素。举个栗子,常用的激活函数sigmoid

函数,可以将实数压缩到[0,1]之间。激活函数是神经网络强大的基础,好的激活函数(根据任务来选择)还可以加速训练。


接下来,确定了神经网络的连接方式、网络的层数、每层的节点数,建好网络模型之后,我们要开始学习这个神经网络的每个连接上的权值了。

训练网络(training)

训练过程就是用训练数据的input经过网络计算出output,再和label计算出loss,再计算出gradients来更新weights的过程。label就是训练集里预先加上的分类标记,loss就是你算出的结果与正确结果(正确为1,错误为0)的误差,或者叫损失。

那么training其实就是通过梯度下降法尽可能缩小loss的过程。如下图所示,我们希望loss值可以降低到右侧深蓝色的最低点。

具体步骤如下:


正向传递:算当前网络的预测值 (Relu是一种激活函数,Wh1、Wh2、W0是权重,b是偏移量)

计算loss:


计算梯度:从loss开始反向传播计算每个参数(parameters)对应的梯度(gradients)。这里用Stochastic Gradient Descent (SGD) 来计算梯度,即每次更新所计算的梯度都是从一个样本计算出来的。

更新权重:这里用最简单的方法来更新,即所有参数都


预测新值:训练过所有样本后,打乱样本顺序再次训练若干次。训练完毕后,当再来新的数据input,就可以利用训练的网络来预测了。这时的output就是效果很好的预测值了。

PS 以上理论知识和公式来自斯坦福大学计算机视觉实验室推出的课程CS231n: Convolutional Neural Networks for Visual Recognition

调戏Tensorflow Playground

接下来,摩拳擦掌想要试一试深度学习的朋友们可以试着调戏一下TensorFlow Playground。TensorFlow游乐场是一个通过网页浏览器就可以训练的简单神经网络,并实现了可视化训练过程的工具。下图就是TensorFlow游乐场默认设置的截图。


左边的每组数据,都是不同形态分布的一群点。每一个点,都与生俱来了2个特征:x1和x2,表示点的位置。数据中的点有2类:橙色和蓝色。我们这个神经网络的目标,就是通过训练,知道哪些位置的点是橙色、哪些位置的点是蓝色。如何确定网络结构呢?到底用不用隐层呢?还是一个隐层?两个隐层或更多?每个层的尺寸该多大?这些都可以在TP上调整,而且立刻就能看到直观的结果。快去试试吧~

推荐阅读:(点击阅读)

AI芯片|浅析Yann LeCun提到的两款Dataflow Chip

10分钟!用初中数学知识看懂深度学习!

走进深度学习,你需要先了解这25个概念和术语...

AI芯片踏入红海

解读AI:快速获取样本将成重点研究方向

机器学习和深度学习的最佳框架大比拼

深入浅出机器学习

机器学习和深度学习的最佳框架大比拼

哪些国家和大学人工智能研究领先?中国第一?

人工智能的“脑洞”有多大?院士:目前太依赖计算

浅说深度学习:核心概念

几张图读懂机器学习:基本概念、五大流派与九种常见算法

通过生活案例读懂机器学习五大算法思维

腾讯云FPGA的深度学习算法

如何在单块GPU上训练超大型深度学习模型

AI芯片怎么降功耗?从ISSCC2017说起

AI驾临人间 四大芯片流派华山论剑

机器学习追根溯源:和计算机技术一样久远

[透析] 卷积神经网络CNN究竟是怎样一步一步工作的?

中国正在引领人工智能?纽约时报说:“是的!”

Nvidia是如何成为AI圈的弄潮儿

人工智能芯片: AI巨轮的引擎

李开复|如何给非专业人士讲解什么是深度学习

分享一个深度学习的电子书(800页)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容