es的分布式原理

路由

image.png

image.png

文档写操作

客户端选择一个 node 发送请求过去,这个 node 就是 coordinating node(协调节点)。

coordinating node 对 document 进行路由,将请求转发给对应的 node(有 primary shard)。[路由的算法是?]

实际的 node 上的 primary shard 处理请求,然后将数据同步到 replica node。

coordinating node 如果发现 primary node 和所有 replica node 都搞定之后,就返回响应结果给客户端


image.png

image.png

单个文档的搜索

查询,GET某一条数据,写入了某个document,这个document会自动给你分配一个全局唯一的id,doc id,同时也是根据doc id进行hash路由到对应的primary shard上面去。也可以手动指定doc id,比如用订单id,用户id。

你可以通过doc id来查询,会根据doc id进行hash,判断出来当时把doc id分配到了哪个shard上面去,从那个shard去查询

1)客户端发送请求到任意一个node,成为coordinate node

2)coordinate node对document进行路由,将请求转发到对应的node,此时会使用round-robin随机轮询算法,在primary shard以及其所有replica中随机选择一个,让读请求负载均衡

3)接收请求的node返回document给coordinate node

4)coordinate node返回document给客户端

image.png

image.png

全文检索

image.png

image.png

image.png

写数据的底层原理

四、写数据底层原理

1、先写入内存buffer,在buffer里的时候数据是搜索不到的;同时将数据写入translog日志文件。

如果buffer快满了,或者到一定时间,就会将内存buffer数据refresh 到一个新的segment file中,但是此时数据不是直接进入segment file磁盘文件,而是先进入

os cache。这个过程就是 refresh。

每隔1秒钟,es将buffer中的数据写入一个新的segment file,每秒钟会写入一个新的segment file,这个segment file中就存储最近1秒内 buffer中写入的数据。

2、但是如果buffer里面此时没有数据,那当然不会执行refresh操作,如果buffer里面有数据,默认1秒钟执行一次refresh操作,刷入一个新的segment file中。

操作系统里面,磁盘文件其实都有一个东西,叫做os cache,即操作系统缓存,就是说数据写入磁盘文件之前,会先进入os cache,先进入操作系统级别的

一个内存缓存中去。只要buffer中的数据被refresh 操作刷入os cache中,这个数据就可以被搜索到了。

3、为什么叫es是准实时的?NRT,全称 near real-time。默认是每隔1秒refresh一次的,所以es是准实时的,因为写入的数据1s之后才能被看到。

可以通过es的restful api或者 java api,手动执行一次 refresh操作,就是手动将buffer中的数据刷入os cache中,让数据立马就可以被搜索到。只要

数据被输入os cache中,buffer 就会被清空了,因为不需要保留buffer了,数据在translog里面已经持久化到磁盘去一份了。

4、重复上面的步骤,新的数据不断进入buffer和translog,不断将buffer数据写入一个又一个新的segment file中去,每次refresh完buffer清空,translog保留。

随着这个过程的推进,translog会变得越来越大。当translog达到一定长度的时候,就会触发commit操作。

5、commit操作发生的第一步,就是将buffer中现有的数据refresh到os cache中去,清空buffer。然后将一个commit point写入磁盘文件,里面标识者这个commit

point 对应的所有segment file,同时强行将os cache中目前所有的数据都fsync到磁盘文件中去。最后清空现有 translog日志文件,重启一个translog,此时commit操作完成。

6、这个commit操作叫做flush。默认30分钟自动执行一次flush,但如果translog过大,也会触发flush。flush操作就对应着commit的全过程,我们可以通过es api,手动执行

flush操作,手动将os cache中数据fsync强刷到磁盘上去。

7、translog日志文件的作用是什么?

执行commit 操作之前,数据要么是停留在buffer中,要么是停留在os cache中,无论是buffer 还是os cache都是内存,一旦这台机器死了,内存中的数据就全丢了。

所以需要将数据对应的操作写入一个专门的日志文件translog中,一旦此时机器宕机了,再次重启的时候,es会自动读取translog日志文件中的数据,恢复到内存buffer

和os cache中去。

8、translog其实也是先写入os cache的,默认每隔5秒刷一次到磁盘中去,所以默认情况下,可能有5s的数据会仅仅停留在buffer或者translog文件的os cache中,如果

此时机器挂了,会丢失5秒钟的数据。但是这样性能比较好,最多丢5秒的数据。

也可以将translog设置成每次写操作必须是直接fsync到磁盘,但是性能会差很多。

9、es第一是准实时的,数据写入1秒后就可以搜索到:可能会丢失数据的。有5秒的数据,停留在buffer、translog os cache 、segment file os cache中,而不在磁盘上,

此时如果宕机,会导致5秒的数据丢失。

10、总结::数据先写入内存buffer,然后每隔1s,将数据refresh到 os cache,到了 os cache数据就能被搜索到(所以我们才说es从写入到能被搜索到,中间有1s的延迟)。

每隔5s,将数据写入到translog文件(这样如果机器宕机,内存数据全没,最多会有5s的数据丢失),translog达到一定程度,或者默认每隔30min,会触发commit操作,将缓冲区的

数据都flush到segment file磁盘文件中。

数据写入 segment file之后,同时就建立好了倒排索引。

五、删除/更新数据底层原理

如果是删除操作,commit的时候会生成一个 .del文件,里面将某个doc标识为 deleted状态,那么搜索的时候根据 .del文件就知道这个doc是否被删除了。

如果是更新操作,就是将原来的doc标识为deleted状态,然后重新写入一条数据。

buffer 每refresh一次,就会产生一个segment file,所以默认情况下是1秒钟一个segment file,这样下来segment file会越来越多,此时会定期执行merge。

每次merge的时候,会将多个segment file合并成一个,同时这里会将标识为 deleted的doc给物理删除掉,然后将新的segment file写入磁盘,这里会写一个

commit point,标识所有新的 segment file,然后打开segment file供搜索使用,同时删除旧的segment file。

六、底层lucence

简单来说,lucence就是一个jar包,里面包含了封装好的各种建立倒排索引的算法代码。我们用java 开发的时候,引入 lucene jar,然后基于lucene的api去开发

就可以了。

通过lucene,我们可以将已有的数据建立索引,lucene会在本地磁盘上面,给我们组织索引的数据结果。

es里的写流程,有4个底层的核心概念,refresh、flush、translog、merge

当segment file多到一定程度的时候,es就会自动触发merge操作,将多个segment file给merge成一个segment file。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容