2019-07-24 激活函数 梯度下降 损失函数

原文:https://www.jianshu.com/p/5329ad3561ea

后面可以看下这篇文章:https://www.cnblogs.com/lliuye/p/9486500.html

一、激活函数

激活函数是每一层神经网络之后用的非线性函数,因为神经网络本身是线型的,利用激活函数可以使之实现非线性。

激活函数主要有四个: sigmoid, tanh, RELU, Leaky RELU. 还有一位博主将softmax 也加了进来。也有一定的道理,因为这五个小兄弟都是将一个K?维的向量映射为另一个K?维的向量。

接下来的话照搬这个知乎专栏

1. sigmoid

sigmoid函数及其导数

sigmoid函数会导致梯度消失(gradient vanishing)。

2. tanh

非线性激活函数,y的值是-1-1,TensorFlow对应的是tf.nn.tanh(x,name=None)

tanh

3. ReLU

f(x)=max(0,x),tensorflow中对应的是tf.nn.relu(features,name=None)

这个函数的优点是处理后的数据具有更好额稀疏性,只有最大数值与0.


5. leaky ReLU

leaky ReLU

5. softmax

Softmax的使得映射后的元素之和为1,通常用在分类任务最后一层。

二、梯度下降

梯度下降是神经网络优化的方法,令输出逼近目标值。

啊懒得写了,看看这个博文就知道了

三、损失函数

这篇博文讲述了

交叉熵损失函数

均值平方差

就是mse,均方误差越小,表明模型越好,

交叉熵

表现预测输入样本属于某一类的概率,越小,预测的效果越准

损失函数的选取取决于输入标签数据的的类型,如果输入的是实数,无界的值,那么就应该使永平方差,如果输入的标签是位矢量,使用交叉熵可能会更合适。

tensorflow 中常见的loss函数

均值平方差,就是tf.reduce_mean(tf.pow(tf.sub(logits,outputs),2.0))

交叉熵:主要有sigmoid函数,softmax函数

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342