力扣数据库刷题---关于 recursive生成连续序列

sql中with xxxx as () 是对一个查询子句做别名,同时数据库会对该子句生成临时表。with recursive 则是一个递归的查询子句,他会把查询出来的结果再次代入到查询子句中继续查询。

#1613.找到遗失的ID

https://leetcode-cn.com/problems/find-the-missing-ids/

表: Customers
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| customer_name | varchar |
+---------------+---------+
customer_id 是该表主键.
该表第一行包含了顾客的名字和id.

写一个 SQL 语句, 找到所有遗失的顾客id. 遗失的顾客id是指那些不在 Customers 表中, 值却处于 1 和表中最大 customer_id 之间的id。
注意: 最大的 customer_id 值不会超过 100。
返回结果按 ids 升序排列

Create table If Not Exists Customers (customer_id int, customer_name varchar(20))
Truncate table Customers
insert into Customers (customer_id, customer_name) values ('1', 'Alice')
insert into Customers (customer_id, customer_name) values ('4', 'Bob')
insert into Customers (customer_id, customer_name) values ('5', 'Charlie')

查询结果格式如下例所示.
Customers 表:
+-------------+---------------+
| customer_id | customer_name |
+-------------+---------------+
| 1 | Alice |
| 4 | Bob |
| 5 | Charlie |
+-------------+---------------+

Result 表:
+-----+
| ids |
+-----+
| 2 |
| 3 |
+-----+
表中最大的customer_id是5, 所以在范围[1,5]内, ID2和3从表中遗失.

方法

with recursive t(n) as(
    select 1 as n
    union all
    select n+1 from t where n<100
)

select n as ids from t
where n<=(select max(customer_id) from customers)
and n not in(select customer_id from customers)

#1635. Hopper Company Queries I

https://leetcode-cn.com/problems/hopper-company-queries-i/

Table: Drivers
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| driver_id | int |
| join_date | date |
+-------------+---------+
driver_id is the primary key for this table.
Each row of this table contains the driver's ID and the date they joined the Hopper company.

Table: Rides
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| ride_id | int |
| user_id | int |
| requested_at | date |
+--------------+---------+
ride_id is the primary key for this table.
Each row of this table contains the ID of a ride, the user's ID that requested it, and the day they requested it.
There may be some ride requests in this table that were not accepted.

Table: AcceptedRides
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| ride_id | int |
| driver_id | int |
| ride_distance | int |
| ride_duration | int |
+---------------+---------+
ride_id is the primary key for this table.
Each row of this table contains some information about an accepted ride.
It is guaranteed that each accepted ride exists in the Rides table.

Write an SQL query to report the following statistics for each month of 2020:
The number of drivers currently with the Hopper company by the end of the month (active_drivers).
The number of accepted rides in that month (accepted_rides).
Return the result table ordered by month in ascending order, where month is the month's number (January is 1, February is 2, etc.).

Create table If Not Exists Drivers (driver_id int, join_date date)
Create table If Not Exists Rides (ride_id int, user_id int, requested_at date)
Create table If Not Exists AcceptedRides (ride_id int, driver_id int, ride_distance int, ride_duration int)
Truncate table Drivers
insert into Drivers (driver_id, join_date) values ('10', '2019-12-10')
insert into Drivers (driver_id, join_date) values ('8', '2020-1-13')
insert into Drivers (driver_id, join_date) values ('5', '2020-2-16')
insert into Drivers (driver_id, join_date) values ('7', '2020-3-8')
insert into Drivers (driver_id, join_date) values ('4', '2020-5-17')
insert into Drivers (driver_id, join_date) values ('1', '2020-10-24')
insert into Drivers (driver_id, join_date) values ('6', '2021-1-5')
Truncate table Rides
insert into Rides (ride_id, user_id, requested_at) values ('6', '75', '2019-12-9')
insert into Rides (ride_id, user_id, requested_at) values ('1', '54', '2020-2-9')
insert into Rides (ride_id, user_id, requested_at) values ('10', '63', '2020-3-4')
insert into Rides (ride_id, user_id, requested_at) values ('19', '39', '2020-4-6')
insert into Rides (ride_id, user_id, requested_at) values ('3', '41', '2020-6-3')
insert into Rides (ride_id, user_id, requested_at) values ('13', '52', '2020-6-22')
insert into Rides (ride_id, user_id, requested_at) values ('7', '69', '2020-7-16')
insert into Rides (ride_id, user_id, requested_at) values ('17', '70', '2020-8-25')
insert into Rides (ride_id, user_id, requested_at) values ('20', '81', '2020-11-2')
insert into Rides (ride_id, user_id, requested_at) values ('5', '57', '2020-11-9')
insert into Rides (ride_id, user_id, requested_at) values ('2', '42', '2020-12-9')
insert into Rides (ride_id, user_id, requested_at) values ('11', '68', '2021-1-11')
insert into Rides (ride_id, user_id, requested_at) values ('15', '32', '2021-1-17')
insert into Rides (ride_id, user_id, requested_at) values ('12', '11', '2021-1-19')
insert into Rides (ride_id, user_id, requested_at) values ('14', '18', '2021-1-27')
Truncate table AcceptedRides
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('10', '10', '63', '38')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('13', '10', '73', '96')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('7', '8', '100', '28')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('17', '7', '119', '68')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('20', '1', '121', '92')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('5', '7', '42', '101')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('2', '4', '6', '38')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('11', '8', '37', '43')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('15', '8', '108', '82')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('12', '8', '38', '34')
insert into AcceptedRides (ride_id, driver_id, ride_distance, ride_duration) values ('14', '1', '90', '74')

The query result format is in the following example.

Drivers table:
+-----------+------------+
| driver_id | join_date |
+-----------+------------+
| 10 | 2019-12-10 |
| 8 | 2020-1-13 |
| 5 | 2020-2-16 |
| 7 | 2020-3-8 |
| 4 | 2020-5-17 |
| 1 | 2020-10-24 |
| 6 | 2021-1-5 |
+-----------+------------+

Rides table:
+---------+---------+--------------+
| ride_id | user_id | requested_at |
+---------+---------+--------------+
| 6 | 75 | 2019-12-9 |
| 1 | 54 | 2020-2-9 |
| 10 | 63 | 2020-3-4 |
| 19 | 39 | 2020-4-6 |
| 3 | 41 | 2020-6-3 |
| 13 | 52 | 2020-6-22 |
| 7 | 69 | 2020-7-16 |
| 17 | 70 | 2020-8-25 |
| 20 | 81 | 2020-11-2 |
| 5 | 57 | 2020-11-9 |
| 2 | 42 | 2020-12-9 |
| 11 | 68 | 2021-1-11 |
| 15 | 32 | 2021-1-17 |
| 12 | 11 | 2021-1-19 |
| 14 | 18 | 2021-1-27 |
+---------+---------+--------------+

AcceptedRides table:
+---------+-----------+---------------+---------------+
| ride_id | driver_id | ride_distance | ride_duration |
+---------+-----------+---------------+---------------+
| 10 | 10 | 63 | 38 |
| 13 | 10 | 73 | 96 |
| 7 | 8 | 100 | 28 |
| 17 | 7 | 119 | 68 |
| 20 | 1 | 121 | 92 |
| 5 | 7 | 42 | 101 |
| 2 | 4 | 6 | 38 |
| 11 | 8 | 37 | 43 |
| 15 | 8 | 108 | 82 |
| 12 | 8 | 38 | 34 |
| 14 | 1 | 90 | 74 |
+---------+-----------+---------------+---------------+

Result table:
+-------+----------------+----------------+
| month | active_drivers | accepted_rides |
+-------+----------------+----------------+
| 1 | 2 | 0 |
| 2 | 3 | 0 |
| 3 | 4 | 1 |
| 4 | 4 | 0 |
| 5 | 5 | 0 |
| 6 | 5 | 1 |
| 7 | 5 | 1 |
| 8 | 5 | 1 |
| 9 | 5 | 0 |
| 10 | 6 | 0 |
| 11 | 6 | 2 |
| 12 | 6 | 1 |
+-------+----------------+----------------+

By the end of January --> two active drivers (10, 8) and no accepted rides.
By the end of February --> three active drivers (10, 8, 5) and no accepted rides.
By the end of March --> four active drivers (10, 8, 5, 7) and one accepted ride (10).
By the end of April --> four active drivers (10, 8, 5, 7) and no accepted rides.
By the end of May --> five active drivers (10, 8, 5, 7, 4) and no accepted rides.
By the end of June --> five active drivers (10, 8, 5, 7, 4) and one accepted ride (13).
By the end of July --> five active drivers (10, 8, 5, 7, 4) and one accepted ride (7).
By the end of August --> five active drivers (10, 8, 5, 7, 4) and one accepted ride (17).
By the end of Septemeber --> five active drivers (10, 8, 5, 7, 4) and no accepted rides.
By the end of October --> six active drivers (10, 8, 5, 7, 4, 1) and no accepted rides.
By the end of November --> six active drivers (10, 8, 5, 7, 4, 1) and two accepted rides (20, 5).
By the end of December --> six active drivers (10, 8, 5, 7, 4, 1) and one accepted ride (2).

方法

with recursive t1 as(
   select 1 as month
   union all
   select month+1 from t1 where month<=11
) #用recursive生成1-12月的连续序列

select t1.month as month,ifnull(sum(t2.counts)over(order by month),0) as active_drivers,#要求累计的时候,可以先求每个月的,再sum()
ifnull(t3.counts,0) as accepted_rides
from t1 left join
(select if(year(join_date)<2020,1,month(join_date)) as month,
count(driver_id)as counts
from drivers
where year(join_date)<=2020
group by if(year(join_date)<2020,1,month(join_date))) t2
on t1.month=t2.month  # t2表是每个月的激活用户数,注意如果是19年的,要一起算在2020年1月上。(非累积)
left join 
(select month(requested_at) as month,count(*) as counts
from rides r join AcceptedRides a on r.ride_id=a.ride_id
where year(requested_at)=2020
group by month(requested_at)) t3 # t3是每个月的通过申请的个数(非累计)
on t1.month=t3.month
order by t1.month

#1645. Hopper Company Queries II

Write an SQL query to report the percentage of working drivers (working_percentage) for each month of 2020 where:
Note that if the number of available drivers during a month is zero, we consider the working_percentage to be 0.
Return the result table ordered by month in ascending order, where month is the month's number (January is 1, February is 2, etc.). Round working_percentage to the nearest 2 decimal places.

The query result format is in the following example.
Result table:
+-------+--------------------+
| month | working_percentage |
+-------+--------------------+
| 1 | 0.00 |
| 2 | 0.00 |
| 3 | 25.00 |
| 4 | 0.00 |
| 5 | 0.00 |
| 6 | 20.00 |
| 7 | 20.00 |
| 8 | 20.00 |
| 9 | 0.00 |
| 10 | 0.00 |
| 11 | 33.33 |
| 12 | 16.67 |
+-------+--------------------

方法

with recursive t1 as(
    select 1 as month
    union all
    select month+1 from t1 where month<12
)
#round(ifnull(ifnull(t3.counts,0)/sum(t2.counts)over(order by month),0)*100,2)as working_percentage 

select month,
if(driver_num=0,0,round(actice_num/driver_num*100,2)) as working_percentage
from 
(select t1.month,
ifnull(sum(t2.counts)over(order by month),0) as driver_num,
ifnull(t3.counts,0) as actice_num
from t1 left join 
(select if(year(join_date)<2020,1,month(join_date)) as month,count(driver_id) as counts
from drivers
where year(join_date)<=2020
group by if(year(join_date)<2020,1,month(join_date)))t2
on t1.month=t2.month
left join 
(select month(requested_at) as month,count(distinct a.driver_id) as counts
from rides  r join AcceptedRides a on r.ride_id=a.ride_id
where year(requested_at)=2020
group by month(requested_at) 
##跟上一道题的区别在于 t3 count(distinct a.driver_id)
) t3 on t1.month=t3.month) aaa

#1651. Hopper Company Queries III

Write an SQL query to compute the average_ride_distance and average_ride_duration of every 3-month window starting from January - March 2020 to October - December 2020. Round average_ride_distance and average_ride_duration to the nearest two decimal places.
The average_ride_distance is calculated by summing up the total ride_distance values from the three months and dividing it by 3. The average_ride_duration is calculated in a similar way.
Return the result table ordered by month in ascending order, where month is the starting month's number (January is 1, February is 2, etc.).

Result table:
+-------+-----------------------+-----------------------+
| month | average_ride_distance | average_ride_duration |
+-------+-----------------------+-----------------------+
| 1 | 21.00 | 12.67 |
| 2 | 21.00 | 12.67 |
| 3 | 21.00 | 12.67 |
| 4 | 24.33 | 32.00 |
| 5 | 57.67 | 41.33 |
| 6 | 97.33 | 64.00 |
| 7 | 73.00 | 32.00 |
| 8 | 39.67 | 22.67 |
| 9 | 54.33 | 64.33 |
| 10 | 56.33 | 77.00 |

方法

with recursive t1 as(
    select 1 as month
    union all
    select month+1 from t1 where month<=11
)#虽然显示前10,但是这里要全部月份,因为计算的时候需要包含后边两个月
select t1.month,
round(avg(ifnull(aa.ride_distance,0))over(order by t1.month rows between current row and 2 following),2) as average_ride_distance,
##要注意ifnull()的位置
round(avg(ifnull(aa.ride_duration,0))over(order by t1.month rows between current row and 2 following),2) as average_ride_duration
from t1 left join
(select month(requested_at) as month,sum(ride_distance)as ride_distance,sum(ride_duration)as ride_duration
from rides r join AcceptedRides a on r.ride_id=a.ride_id
where year(requested_at)=2020
group by month(requested_at)) aa 
on t1.month=aa.month
order by t1.month
limit 10

#1336. 每次访问的交易次数

https://leetcode-cn.com/problems/number-of-transactions-per-visit/

写一条 SQL 查询多少客户访问了银行但没有进行任何交易,多少客户访问了银行进行了一次交易等等
结果包含两列:
transactions_count: 客户在一次访问中的交易次数
visits_count: 在 transactions_count 交易次数下相应的一次访问时的客户数量
transactions_count 的值从 0 到所有用户一次访问中的 max(transactions_count)
按 transactions_count 排序

表: Visits
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| visit_date | date |
+---------------+---------+
(user_id, visit_date) 是该表的主键
该表的每行表示 user_id 在 visit_date 访问了银行

表: Transactions
+------------------+---------+
| Column Name | Type |
+------------------+---------+
| user_id | int |
| transaction_date | date |
| amount | int |
+------------------+---------+
该表没有主键,所以可能有重复行
该表的每一行表示 user_id 在 transaction_date 完成了一笔 amount 数额的交易
可以保证用户 (user) 在 transaction_date 访问了银行 (也就是说 Visits 表包含 (user_id, transaction_date) 行)

Create table If Not Exists Visits (user_id int, visit_date date)
Create table If Not Exists Transactions (user_id int, transaction_date date, amount int)
Truncate table Visits
insert into Visits (user_id, visit_date) values ('1', '2020-01-01')
insert into Visits (user_id, visit_date) values ('2', '2020-01-02')
insert into Visits (user_id, visit_date) values ('12', '2020-01-01')
insert into Visits (user_id, visit_date) values ('19', '2020-01-03')
insert into Visits (user_id, visit_date) values ('1', '2020-01-02')
insert into Visits (user_id, visit_date) values ('2', '2020-01-03')
insert into Visits (user_id, visit_date) values ('1', '2020-01-04')
insert into Visits (user_id, visit_date) values ('7', '2020-01-11')
insert into Visits (user_id, visit_date) values ('9', '2020-01-25')
insert into Visits (user_id, visit_date) values ('8', '2020-01-28')
Truncate table Transactions
insert into Transactions (user_id, transaction_date, amount) values ('1', '2020-01-02', '120')
insert into Transactions (user_id, transaction_date, amount) values ('2', '2020-01-03', '22')
insert into Transactions (user_id, transaction_date, amount) values ('7', '2020-01-11', '232')
insert into Transactions (user_id, transaction_date, amount) values ('1', '2020-01-04', '7')
insert into Transactions (user_id, transaction_date, amount) values ('9', '2020-01-25', '33')
insert into Transactions (user_id, transaction_date, amount) values ('9', '2020-01-25', '66')
insert into Transactions (user_id, transaction_date, amount) values ('8', '2020-01-28', '1')
insert into Transactions (user_id, transaction_date, amount) values ('9', '2020-01-25', '99')

下面是查询结果格式的例子:

Visits 表:
+---------+------------+
| user_id | visit_date |
+---------+------------+
| 1 | 2020-01-01 |
| 2 | 2020-01-02 |
| 12 | 2020-01-01 |
| 19 | 2020-01-03 |
| 1 | 2020-01-02 |
| 2 | 2020-01-03 |
| 1 | 2020-01-04 |
| 7 | 2020-01-11 |
| 9 | 2020-01-25 |
| 8 | 2020-01-28 |
+---------+------------+
Transactions 表:
+---------+------------------+--------+
| user_id | transaction_date | amount |
+---------+------------------+--------+
| 1 | 2020-01-02 | 120 |
| 2 | 2020-01-03 | 22 |
| 7 | 2020-01-11 | 232 |
| 1 | 2020-01-04 | 7 |
| 9 | 2020-01-25 | 33 |
| 9 | 2020-01-25 | 66 |
| 8 | 2020-01-28 | 1 |
| 9 | 2020-01-25 | 99 |
+---------+------------------+--------+
结果表:
+--------------------+--------------+
| transactions_count | visits_count |
+--------------------+--------------+
| 0 | 4 |
| 1 | 5 |
| 2 | 0 |
| 3 | 1 |
+--------------------+--------------+

  • 对于 transactions_count = 0, visits 中 (1, "2020-01-01"), (2, "2020-01-02"), (12, "2020-01-01") 和 (19, "2020-01-03") 没有进行交易,所以 visits_count = 4 。
  • 对于 transactions_count = 1, visits 中 (2, "2020-01-03"), (7, "2020-01-11"), (8, "2020-01-28"), (1, "2020-01-02") 和 (1, "2020-01-04") 进行了一次交易,所以 visits_count = 5 。
  • 对于 transactions_count = 2, 没有客户访问银行进行了两次交易,所以 visits_count = 0 。
  • 对于 transactions_count = 3, visits 中 (9, "2020-01-25") 进行了三次交易,所以 visits_count = 1 。
  • 对于 transactions_count >= 4, 没有客户访问银行进行了超过3次交易,所以我们停止在 transactions_count = 3 。

方法

with recursive t1 as(
    select 0 as n
    union all
    select n+1 from t1 where 
    n<(select max(counts) from(select count(1) as counts from Transactions group by user_id,transaction_date)a)),#生成从0开始连续的数,这个数不能超过一次访问中最多的交易次数
r as(
select user_id,date,sum(view) view,sum(trans) trans from
(select user_id,visit_date date,count(*) view,0 trans
from visits 
group by user_id,visit_date
union all
select user_id,transaction_date date,0 view,count(*) trans
from Transactions 
group by user_id,transaction_date) a1
group by user_id,date)  #每天、每个用户的访问次数和交易次数

select n transactions_count,ifnull(sum(r.view),0) visits_count 
from t1 left join r on t1.n=r.trans
group by n 

https://zhuanlan.zhihu.com/p/110197786

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容