2.4 large neighbourhood search

在这一章节,我们将用到minizinc, 类似于一个编译器,但是它提供不同的solver帮助我们解决问题,我们只需要对问题中的限制(binary constraint network)进行描述(1.constant 2.variable 3.constraint),要求solver 为我们提供满足解或者最优解。

生活中我们会遇到很多资源分配问题,例如
在departure point, 有两种不同类型的车,一种只运常温货物,一种可以运常温和低温货物。每辆车都有各自的capacity
如今送货到很多家商店,每个商店都有对于货物的不同需求。
对于不同的问题条件,请给出不同的解决方案。

4.For the first three questions, you were required only to write MiniZinc encodings of the problems, and to note the limits on problem size that can be solved optimally, and on problems that can be solved at all, by MiniZinc’s solver alone. In order to scale up to somewhat larger problem instances, you will now implement large neighbourhood search (LNS) in Python, using MiniZinc with its default FD solver to search each successive neighbourhood.

Answer:

import argparse
import random
import csv

# Complete the file with your LNS solution

headline = []  # store the headline of the csv file
with open(start_solution_filename,'r') as f:
    solution_list=f.readlines()
    headline= solution_list[0].split(',')  # read and split the headline

truck_amount = int(headline[0])  # load the truck amount
customer_amount = int(headline[1]) # Load the customer amount
cost = float(headline[2])  # load the original cost
truck= []  # a data structure([{},{},{}]) storing every truck's info
line = []  # a data structure([[],[],[]]) storing every line of csv
new_cost = 0  # store the new cost we got and compare it with original one

for index in range(1,len(solution_list)) :  # create enough list to store the every line of csv.
    line[index].append([])

for index in range(1, truck_amount+1) : # create enough dic to hold every truck's info
    truck[index].append({})

for index in range(1,len(solution_list)):
    # read and split the rest lines so that we can move its' info into truck[]
    line[index] = solution_list[index].split(',')

for index in range(1,len(solution_list)) :  # go through all the input lines
    for truck_id in range(1,truck_amount):  # match the truck with their info
        if line[index][0] == truck_id:
            for customer_order in range(1,customer_amount):  # match the customer order with their info
                if line[index][1] == customer_order:
                    truck[truck_id][customer_order] = line[index] # push the corresponding info into each dic
                    break

#  start to detect the neighbourhood

for index in (1,truck_amount): # go through all the trucks
    if len(truck[index])== 1: # if the truck only have one customer then skip it
        continue
    else:
        for customer in range(1,len(truck[index])) :  # if not, then change their order of visiting

            # destroy a part of parameters(only the visiting order) and assign new value randomly
            truck[index][customer][1] = random.choice(range(1,len(truck[index])))

        #  I have no idea how to load the .dzn files, so I use the pseudocode here
        new_cost = (sum(each truck’running distance) * cost of cents per km / 100.


        if new_cost < cost :  # if the new assignment is better, then output this new solution

            cost = new_cost  # refresh the cost value
            print(truck_amount, " ", customer_amount, " ", cost)
            for index_1 in (1, truck_amount):
                for index_2 in len(truck[index_1]):
                    print(truck[index_1][index_2])


if __name__ =='__main__':
   parser = argparse.ArgumentParser()
   parser.add_argument('problem_filename', help='problem file')
   parser.add_argument('start_solution_filename', help='file describing the solution to improve')
   args = parser.parse_args()
   start_solution_filename = args.start_solution_filename
   problem_filename = args.problem_filename

论述:
Because I have no idea how to load the .dzn files in python, so I have use a little part of pseudocode to calculate the “cost” in my python code.

In my design, the neighbourhood is the records, which are transported by the same truck but the different delivering order.

Every time when we find such a group, the parameters(delivering order) will be destroyed and assigned randomly.

If the now_cost is lower than cost in last situation, then output the new solution and refresh the cost value with new_cost.

In this way, after we go through the whole solution records then the optimal solution can be found.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容