人脸面部识别的流程和测试点

人脸识别现在越来越流行了,广泛应用与各行各业。那对于软件的这项高大上的功能该如何进行测试呢?接下来我们讲究一起看看这个神秘的过程。

首先,在测试之前需要先了解人脸识别的整个流程,


首先是人脸采集。

安装拍照摄像设备之后,需要在动态的场景与复杂的背景中判断是否存在人脸,并分离出这种面像。然后采集到人脸的照片。


因此采集过程是非常重要的,一需要能够采集到内容,二采集的内容能够分离出来是人脸。

而特征提取的原理是,将获取的人脸照片进行色彩矫正、光线调整,五官定位和脸部分割,将人脸的鼻子、眼睛、嘴巴等视为一个个特征点,计算每个特征点所在的位置、距离、角度。

正常场景下,在合适的光源下,采集人脸的正面,包含正常完整的人脸轮廓,毫无遮挡的五官,清晰的被拍照设备拍到,这样才能够准确的捕捉到特征,并判断出来。

但对于测试同学来讲,还要考虑异常场景的表现,即任何可能造成拍不到,拍不清晰,判断不出是人脸,或者不完整的表现。详细场景比如:

1) 人脸没有正对摄像头,角度有倾斜。

2) 拍照环境过暗或者过黑。

3) 有佩戴黑框眼镜或墨镜拍照。

4) 头发有明显遮住眼睛或脸部轮廓。

5) 摄像头内包含多张人脸。

另外判断拍摄的样品是否包含人脸时,原理上一般会通过样品学习、或者是参考模版来,比如先设计一个标准人脸的模版,包含标准的特征、有一定的结构分布、相对规律的肤色分布。

那么针对这个原理,在测试时需要考虑不同肤色,或者是面部特征过于复杂的案例,比如黑人、比如脸上有皱纹的老人。

再看人脸比对。

实际应用场景中,人脸比对的本质是照片的比对。比对两张脸中,其中一张脸一般来自于当前场景拍摄的照片,另一张照片一般来自于公安部或者数据库中的照片。

公安部或数据库的照片是用来作为比对标准的,也是固定且一般不可随意篡改的。但采集照片的环节容易出现各种各样的漏洞,容易被一些不法分子利用虚假照片、他人照片、网络照片等进行攻击。

因此,从测试角度来看,需要覆盖到这些非法采集照片的行为,比如:

1) 翻拍后的照片。

2) 长相相似度很高的非本人的照片

3) 软件合成的虚拟人脸

4) 基于证件照PS的照片

等等。

目前市面上主流的几种抗攻击的照片采集方式主要有三种:活体检测、连续检测、3D检测。

1) 活体检测:判断用户是否为正常操作,通过指定用户做随机动作,一般有张嘴、摇头、点头、凝视、眨眼等等,防止照片攻击。判断用户是否真实在操作,指定用户上下移动手机,防止视频攻击和非正常动作的攻击。

2) 3D检测:验证采集到的是否为立体人像,能够防止平面照片、不同弯曲程度的照片等。

3) 连续检测:通过连续的检测,验证人脸运动轨迹是否正常,防止防止跳过活体检测直接

替换采集的照片,也能够防止中途切换人。

其中活体检测是现在应用最广的一种抗攻击人脸数据采集方式。

因为不管是直接对照片检测,还是对活体进行检测,最终的目的都是采集人脸不同角度的照片。因此如果活体检测没有与连续性检测和3D 检测结合使用,也会存在一些漏洞。

这些漏洞即是测试的重点:

1) 拍摄人脸正面、侧面、张嘴、闭眼等照片,用不同角度的静态照片绕过本人现场检测。

2) 录制各种动作视频,按照一定的标准拼接起来,绕过本人现场检测。

计算机只会告诉我们比对的两张脸的相似程度,是80%或者是20%,但不会告诉我们这两张脸是否为同一个人。

因此人脸比对有一个阈值的概念。设置相似度大于x%的时候,视为人脸比对通过,小于x%的时候,视为人脸比对不通过。设定阈值的过程就是模型评估。

阈值设定过低,则人脸比对通过率高,误报率可能也会升高。

阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。

因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。

举个例子:

有8个样本,分别拿十张照片与数据库证件照进行人脸比对,其中3个确实是人证统一,另外四个人证不同。比对的结果相似度如下:


假设阈值设定60%,则人脸比对通过率=4/8=50%,误报率=1/8=12.5%。

假设阈值设定70%,则人脸比对通过率=2/8=25%,误报率=1/8=12.5%。

假设阈值设定50%,则人脸比对通过率=5/8=62.5%,误报率=2/8=25%。

目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。

【转载文章 转载公众号:隔壁老王说测试,地址:https://mp.weixin.qq.com/s/hxvOtcfvnzoE3XN5j4PirQ】

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • 目录 1.人脸识别产品分析 2.BAT人脸功能对比 3.活体检测 4.人脸识别SDK 5.人脸识别应用漫谈 前言 ...
    少侠你裤子掉了阅读 1,951评论 0 1
  • BAT人脸识别产品分析 目录 1.人脸识别产品分析 2.BAT人脸功能对比 3.活体检测 4.人脸识别SDK 5....
    银海系阅读 1,186评论 0 17
  • 人脸识别概述:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别区别于其他生物特征识别方法的...
    城市中迷途小书童阅读 2,400评论 0 3
  • 听说今天需要女儿在坟前恸哭,以感动阎王为亲人开罪,我不会像别人那样嚎啕大哭,只会让泪水无声的流淌,眼前浮现您所有的...
    梅花雪儿阅读 234评论 0 0
  • Interesting,even overtime on weekend is like going a rend...
    MaryYao2019阅读 95评论 0 0