学习笔记 — 关键词提取

关键词是指能反映文本主题或者主要内容的词语。关键词提取是NLP领域的一个重要的子任务。在信息检索中,准确的关键词提取可以大幅提升效率;在对话系统中,机器可以通过关键词来理解用户意图;在文本分类中,关键词的发现也非常有帮助。

关键词提取的方法主要有:TF-IDF、TextRank、Rake、Topic-Model等。

TF-IDF


TF-IDF的基本思想是:词语的重要性与它在文件中出现的次数成正比,但同时会随着它在语料库中出现的频率成反比下降。

一个文档中多次出现的词总是有一定的特殊意义,但是并不是所有多次出现的词就都是有意义的,如果一个词在所有的文档中都多次出现,那么这个词就没有什么价值了。或者说,如果某个词或者短语在一个文档中出现多次,但是在其他文档中很少出现,就可以认为这个词或短语具有很好的区分性,适合用来对文档进行分类。

TF(Term Frequency)表示一个词在文档中出现的次数。

DF(Document Frequency)表示整个语料库中含有某个词的文档个数

IDF(Inverse Document Frequency)为逆文档频率,其计算公式为:
IDF= log(语料库中文档总数/(包含该词的文档数+1))

+1 的作用是确保分母不为零。

TF-IDF = TF * IDF

由公式可知:一个词在文档中出现的次数越多,其TF值就越大,整个语料库中包含某个词的文档数越少,则IDF值越大,因此某个词的TF-IDF值越大,则这个词是关键词的概率越大。

TF-IDF关键词提取算法的一大缺点是:为了精确的提取一篇文档中的关键词,需要有一整个语料库来提供支持。这个问题的解决方法,通常是在一个通用的语料库上提前计算好所有词的IDF值,jieba就是这么做的。这样的解决方案对于普通文档关键词提取有一定的效果,但是对于专业性稍微强一点的文档,表现就会差很多。

jieba中的已经有TF-IDF关键词提取算法的实现。使用jieba中的TF-IDF关键词提取算法的代码如下:

Rake


Rake的英文全称是Rapid Automatic Keyword Extraction。

Rake算法引入了一个degree(度)的概念,并且对词和短语不做任何区分,因此,它实际上是不仅仅是在提取关键词,也是在提取关键短语。

关于Rake中引入的degree,它其实是图论中的一个概念。在一张图上,任一顶点的degree(度)是指与该顶点相关联的边的条数。在Rake算法中,一个词的degree其实就是它在整个文档中的非重复共现词的数量。

举个例子来说明degree的计算。比如在 “我要买一个小米手机,因为大家都说小米手机很好用!”中,“小米”这个词出现了两次,共现词分别是 【一个,手机,说,手机】,因此,在这句话中,“小米”这个词的degree就是3。

使用Rake算法进行关键词提取不需要一整个语料库的支持,相比于TF-IDF,这是一个很大的优势。

Rake算法的输入参数有三个:1)停用词表(stop words);2)段落分割符;3)词语分割符。针对同一种语言,这三个参数事实上是一样的。

使用Rake算法进行关键词(短语)提取的过程如下:

step 1. 从输入文本中获取候选关键词(candidate keywords)

step 2. 计算所有候选关键词的得分,公式如下:

 score = sum(deg(w)/freq(w))

step 3. 拼接候选关键词(以同样的顺序相邻出现两次),获取带有停用词的关键词

step 4. 输出得分最高的前T个候选关键词作为关键词,作者的做法是输出前三分之一

Rake算法的实现,请点击:https://github.com/zelandiya/RAKE-tutorial

TextRank


关于TextRank算法,之前写过一篇,点击直达

参考资料


1、ROSE S, ENGEL D, CRAMER N等. Automatic Keyword Extraction from Individual Documents[G]//Text Mining. Wiley-Blackwell, 2010: 1–20.

2、关键词提取方法学习总结(TF-IDF、Topic-model、RAKE)

3、用 RAKE 和 Maui 做 NLP 关键词提取的教程

4、https://github.com/zelandiya

5、自然语言处理系列篇——关键词智能提取

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容