分布式最佳实践:数据分发

为什么

在微服务架构中,在服务拆分后,每个服务都会根据自身业务维护独立的数据,服务之间需要进行数据交互,一般会采用 RPC 或 RESTful API 进行通信。

在某些复杂场景下,微服务通常不仅需要更新本地数据存储,而且还需要将发生的数据变更通知其他服务。比如去数据库 join、同步数据到数据仓储,那么如果只是通过常用的进程间通信方式来处理数据,那么性能是非常差的。

数据分发则是为了解决这类问题,通过某种方式将数据源中的数据分发给第三方,数据分发需要遵守一个原则:Single Source of Truth,也就是说分发数据的服务应该是该数据的唯一主人,分发到其它系统的数据应该是只读的,非权威的,不能保证准确性。

常见的数据分发场景

  • 同步数据仓库/搜索引擎
  • 去数据库 join(通过数据分发冗余,避免跨库join)
  • 实现分布式事务
  • 数据库拆分的迁移

怎么做

开始之前,我们先举一个简单的例子,假如有一个用户服务(user-service),当对用户信息进行变更时,需要将变更的信息同步给第三方(order-service)

双写

第一个想到的应该就是直接双写,在 user-service 中对用户数据修改后,立马调用第三方接口进行同步。

首先我们引入了分布式事务来解决了双写的强一致性问题,事实上,数据分发对于一致性的要求并不是非常高,一般来说要求最终一致性即可,现在来看,同步了一个三方,我们还能接受。

随着业务规模的扩张,现在需要对用户的信息进行报表分析,现在需要将用户信息再同步到数据仓库中,于是


随着需要同步的三方服务越来越多,分布式事务引入的技术复杂性也越来越高,对于 userService 服务本身来说耦合性也越来越高,最终就会导致服务的维护性越来越差。

事务性发件箱(Transactional Outbox)

可以看到 双写 是一个不太靠谱的方案。它会带来两个问题

  • 引入分布式事务,导致复杂性增高
  • 耦合性太高
    而且是随着接入的三方的增多,复杂性也会线性增大。

事务性发件箱模式则可以很好的解决这两个问题,它做了两件事

  1. 将分布式事务转换成本地事务,在 user 表所在的数据库中新增一个 outbox 表,更新用户信息的同时把对用户的变更信息一起插入到 outbox 表中,可以直接使用本地事务保证原子性。
  2. 新增一个 Message Relay 线程,定时从 outbox 表中拉取未处理的数据,发布到 MQ 中,在三方系统中只需要订阅 topic 即可,这样大大的降低了服务的耦合性

看起来很完美,解决了分布式事务的复杂性和耦合性。但引入了新的技术栈和 Message Relay 节点,没有银弹... 依旧会出现新的需要考虑的问题

  • 消费方在消费MQ数据时需要做幂等处理
  • 需要保证 Message Relay 的高可用,高可用的同时需要考虑选主问题(一般只需要一个 Message Relay 线程工作)
  • 需要对错误消息跟踪处理

虽然引入了新的复杂性,但长远来看是可以接受的。维护成本也比较小,但由于 Message Relay 是从 outbox 中定时拉取数据,然后发布到 MQ,最后订阅方在进行消费,这个数据流还是比较长的,也就意味着使用 事务性发件箱模式 数据的实时性并不高,同时也会有一定的侵入性。

变更数据捕获(Change Data Capture, CDC)

Transactional Outbox 模式的一个硬伤就是实时性较差,主要原因就在于 Message Relay 拉取 Outbox 的频率,如果直接轮询,对数据库就会造成很大的压力,如果定期拉取,实时性就很差。

Change Data Capture 是通过捕获增量数据的方式进行数据的同步,其利用了数据库的事务日志通知的特性,捕获记录的变更记录,从而可以及时的感知到数据的变动,大大的提高了实时性。

CDC 的原理也非常简单,一般数据库,对于变更提交操作,都记录所谓事务日志Transaction Log,也称为提交日志Commit Log,比如 MySQL 支持 binlog,Postgres 支持 Write Ahead log。事务日志可以简单理解为数据库本地的一个文件队列,它记录了按时间顺序发生的对数据库表的变更提交记录。

同样 CDC 也引入了一些新的复杂性

  • Transactional log miner 的高可用以及监控告警
  • 需要深入理解数据库的事务日志格式和协议

国内用的比较多的 CDC 解决方案是阿里的 Canal,其核心原理就是借助了 MySQL 的主从复制功能,模拟成 MySQL 的 salve 节点,向 MySQL 发送 dump 协议,接收 MySQL 推送的 binlog。

总结

面向业务系统数据库的数据集成场景中,数据分发的场景会越来越多,在保证数据最终一致性的前提下,数据的实时性越来越重要。本文介绍了三种数据分发的方式

双写
适合简单的业务场景,不引入新的技术栈直接通过常规的进程间通信方式进行数据分发。为了解决分布式事务的问题,需要引入分布式事务解决方案,当然也可以使用最简单的补偿方式来避免引入分布式事务的复杂度。

事务性发件箱 Transactional Outbox
适合中小规模的业务场景,虽然引入了新的技术栈带来一些新的问题,但这些问题都有比较成熟的解决方案。对于 Transactional Outbox 模式来说没办法避免的就是两点

  • 对服务会较小的侵入性
  • 数据的实时性相对较差
    所以如果我们能够接受这两个缺点,那么 Transactional Outbox 模式是个不错的选择。

变更数据捕获 Change Data Capture
相较于 Transactional Outbox 来说,虽然有现成的解决方案,但 CDC 的综合复杂性依旧会更高,甚至需要单独的进行维护。CDC 带来的最大好处就是实时性很高,所以 CDC 更适合于大规模且实时性要求更高的业务场景。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容