题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
问题分析
属于斐波那契的应用
对于本题,前提只有 一次 1阶或者2阶的跳法。
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列:
f(n) =
- 1, (n=1)
- 2, (n=2)
- f(n-1)+f(n-2) ,(n>2,n为整数)
解题思路1
class Solution {
public:
int jumpFloor(int number) {
if (number <= 0)
{
return 0;
}
if (number == 1)
{
return 1;
}
if (number == 2)
{
return 2;
}
int f_n = 0;
int f_one = 1;
int f_two = 2;
for (int i = 3; i <= number; i++)
{
f_n = f_one + f_two;
f_one = f_two;
f_two = f_n;
}
return f_n;
}
};