二十一、GCD底层

单例

单例(dispatch_once),我们溯源最后找到了

#define dispatch_once _dispatch_once

void
_dispatch_once(dispatch_once_t *predicate,
        DISPATCH_NOESCAPE dispatch_block_t block)
{
    if (DISPATCH_EXPECT(*predicate, ~0l) != ~0l) {
        dispatch_once(predicate, block);
    } else {
        dispatch_compiler_barrier();
    }
    DISPATCH_COMPILER_CAN_ASSUME(*predicate == ~0l);
}

void
dispatch_once(dispatch_once_t *val, dispatch_block_t block)
{
    dispatch_once_f(val, block, _dispatch_Block_invoke(block));
}

DISPATCH_NOINLINE
void
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
    dispatch_once_gate_t l = (dispatch_once_gate_t)val;

#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
    if (likely(v == DLOCK_ONCE_DONE)) {
        return;
    }
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    if (likely(DISPATCH_ONCE_IS_GEN(v))) {
        return _dispatch_once_mark_done_if_quiesced(l, v);
    }
#endif
#endif
    if (_dispatch_once_gate_tryenter(l)) {
        return _dispatch_once_callout(l, ctxt, func);
    }
    return _dispatch_once_wait(l);
}

这里的l来源于static静态变量,所以有唯一性,如果发现 DLOCK_ONCE_DONE处理过就会直接return

static inline bool
_dispatch_once_gate_tryenter(dispatch_once_gate_t l)
{
    return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
            (uintptr_t)_dispatch_lock_value_for_self(), relaxed);
}

在这里就尝试对l->dgo_once进行比较,然后进行解锁,解锁完之后,没问题就会进行_dispatch_once_callout调用,多线程时候也只会执行一次后进行加锁,剩下的进行等待

static void
_dispatch_once_callout(dispatch_once_gate_t l, void *ctxt,
        dispatch_function_t func)
{
    _dispatch_client_callout(ctxt, func);
    _dispatch_once_gate_broadcast(l);
}

在这里就是调用完block之后进行广播

static inline void
_dispatch_once_gate_broadcast(dispatch_once_gate_t l)
{
    dispatch_lock value_self = _dispatch_lock_value_for_self();
    uintptr_t v;
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    v = _dispatch_once_mark_quiescing(l);
#else
    v = _dispatch_once_mark_done(l);
#endif
    if (likely((dispatch_lock)v == value_self)) return;
    _dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
}

static inline uintptr_t
_dispatch_once_mark_done(dispatch_once_gate_t dgo)
{
    return os_atomic_xchg(&dgo->dgo_once, DLOCK_ONCE_DONE, release);
}

对比完之后进行DLOCK_ONCE_DONE,下次在过来的时候if (likely(v == DLOCK_ONCE_DONE)) { return; }发现之后直接return。

dispatch_async

void
dispatch_async(dispatch_queue_t dq, dispatch_block_t work)
{
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME;
    dispatch_qos_t qos;

    // 任务包装器 - 接受 - 保存 - 函数式
    // 保存 block 到属性里
    qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
_dispatch_continuation_init

在这里对qos进行初始化

DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu, dispatch_block_t work,
        dispatch_block_flags_t flags, uintptr_t dc_flags)
{
    void *ctxt = _dispatch_Block_copy(work);

    dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        dc->dc_flags = dc_flags;
        dc->dc_ctxt = ctxt;
        // will initialize all fields but requires dc_flags & dc_ctxt to be set
        return _dispatch_continuation_init_slow(dc, dqu, flags);
    }

    dispatch_function_t func = _dispatch_Block_invoke(work);
    if (dc_flags & DC_FLAG_CONSUME) {
        func = _dispatch_call_block_and_release;
    }
    return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}

在这里把block封装了进去

DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init_f(dispatch_continuation_t dc,
        dispatch_queue_class_t dqu, void *ctxt, dispatch_function_t f,
        dispatch_block_flags_t flags, uintptr_t dc_flags)
{
    pthread_priority_t pp = 0;
    dc->dc_flags = dc_flags | DC_FLAG_ALLOCATED;
    dc->dc_func = f;
    dc->dc_ctxt = ctxt;
    // in this context DISPATCH_BLOCK_HAS_PRIORITY means that the priority
    // should not be propagated, only taken from the handler if it has one
    if (!(flags & DISPATCH_BLOCK_HAS_PRIORITY)) {
        pp = _dispatch_priority_propagate();
    }
    _dispatch_continuation_voucher_set(dc, flags);
    return _dispatch_continuation_priority_set(dc, dqu, pp, flags);
}
_dispatch_continuation_async

上面对信息进行了,下面这不就是创建线程和函数执行了

DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
        dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
    if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
        _dispatch_trace_item_push(dqu, dc);
    }
#else
    (void)dc_flags;
#endif
    return dx_push(dqu._dq, dc, qos);
}

#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)

因为是从并发队列里找过来的,所以找queue_concurrent

DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_concurrent, lane,
    .do_type        = DISPATCH_QUEUE_CONCURRENT_TYPE,
    .do_dispose     = _dispatch_lane_dispose,
    .do_debug       = _dispatch_queue_debug,
    .do_invoke      = _dispatch_lane_invoke,

    .dq_activate    = _dispatch_lane_activate,
    .dq_wakeup      = _dispatch_lane_wakeup,
    .dq_push        = _dispatch_lane_concurrent_push,
);

这里就可以直接去找_dispatch_lane_concurrent_push

DISPATCH_NOINLINE
void
_dispatch_lane_concurrent_push(dispatch_lane_t dq, dispatch_object_t dou,
        dispatch_qos_t qos)
{
    // <rdar://problem/24738102&24743140> reserving non barrier width
    // doesn't fail if only the ENQUEUED bit is set (unlike its barrier
    // width equivalent), so we have to check that this thread hasn't
    // enqueued anything ahead of this call or we can break ordering
    if (dq->dq_items_tail == NULL &&
            !_dispatch_object_is_waiter(dou) &&//判断是否等待
            !_dispatch_object_is_barrier(dou) &&//栅栏函数
            _dispatch_queue_try_acquire_async(dq)) {//尝试获取
        return _dispatch_continuation_redirect_push(dq, dou, qos);
    }

    _dispatch_lane_push(dq, dou, qos);
}

DISPATCH_NOINLINE
static void
_dispatch_continuation_redirect_push(dispatch_lane_t dl,
        dispatch_object_t dou, dispatch_qos_t qos)
{
    if (likely(!_dispatch_object_is_redirection(dou))) {
        dou._dc = _dispatch_async_redirect_wrap(dl, dou);
    } else if (!dou._dc->dc_ctxt) {
        // find first queue in descending target queue order that has
        // an autorelease frequency set, and use that as the frequency for
        // this continuation.
        dou._dc->dc_ctxt = (void *)
        (uintptr_t)_dispatch_queue_autorelease_frequency(dl);
    }

    dispatch_queue_t dq = dl->do_targetq;
    if (!qos) qos = _dispatch_priority_qos(dq->dq_priority);
    dx_push(dq, dou, qos);
}

之前dq->do_targetq = tq;,所以在这里的dx_push其实就是向父级去寻找。
我们添加符号点断发现走的是_dispatch_root_queue_push


DISPATCH_NOINLINE
void
_dispatch_root_queue_push(dispatch_queue_global_t rq, dispatch_object_t dou,
        dispatch_qos_t qos)
{
...
    _dispatch_root_queue_push_inline(rq, dou, dou, 1);
}

DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_root_queue_push_inline(dispatch_queue_global_t dq,
        dispatch_object_t _head, dispatch_object_t _tail, int n)
{
    struct dispatch_object_s *hd = _head._do, *tl = _tail._do;
    if (unlikely(os_mpsc_push_list(os_mpsc(dq, dq_items), hd, tl, do_next))) {
        return _dispatch_root_queue_poke(dq, n, 0);
    }
}

DISPATCH_NOINLINE
void
_dispatch_root_queue_poke(dispatch_queue_global_t dq, int n, int floor)
{
...
    return _dispatch_root_queue_poke_slow(dq, n, floor);
}

DISPATCH_NOINLINE
static void
_dispatch_root_queue_poke_slow(dispatch_queue_global_t dq, int n, int floor)
{
    int remaining = n;
    int r = ENOSYS;

    //root_queue初始化,单例
    _dispatch_root_queues_init();
    //调试,是否有异常
    _dispatch_debug_root_queue(dq, __func__);
    //跟踪运行时事件
    _dispatch_trace_runtime_event(worker_request, dq, (uint64_t)n);

#if !DISPATCH_USE_INTERNAL_WORKQUEUE
#if DISPATCH_USE_PTHREAD_ROOT_QUEUES
    if (dx_type(dq) == DISPATCH_QUEUE_GLOBAL_ROOT_TYPE)//如果是GLOBAL_ROOT_TYPE
#endif
    {
        _dispatch_root_queue_debug("requesting new worker thread for global "
                "queue: %p", dq);
        r = _pthread_workqueue_addthreads(remaining,//添加线程
                _dispatch_priority_to_pp_prefer_fallback(dq->dq_priority));
        (void)dispatch_assume_zero(r);
        return;
    }
#endif // !DISPATCH_USE_INTERNAL_WORKQUEUE
#if DISPATCH_USE_PTHREAD_POOL//如果是线程池
...

    int can_request, t_count;
    // seq_cst with atomic store to tail <rdar://problem/16932833>
    t_count = os_atomic_load2o(dq, dgq_thread_pool_size, ordered);//线程池大小
    do {
        //计算可以请求数量
        can_request = t_count < floor ? 0 : t_count - floor;
        if (remaining > can_request) {
            _dispatch_root_queue_debug("pthread pool reducing request from %d to %d",
                    remaining, can_request);
            os_atomic_sub2o(dq, dgq_pending, remaining - can_request, relaxed);
            remaining = can_request;
        }
        if (remaining == 0) {//根队列的pthread池已满
            _dispatch_root_queue_debug("pthread pool is full for root queue: "
                    "%p", dq);
            return;
        }
    } while (!os_atomic_cmpxchgvw2o(dq, dgq_thread_pool_size, t_count,
            t_count - remaining, &t_count, acquire));

#if !defined(_WIN32)
...
#endif
    do {
        _dispatch_retain(dq); // released in _dispatch_worker_thread
        while ((r = pthread_create(pthr, attr, _dispatch_worker_thread, dq))) {
            if (r != EAGAIN) {
                (void)dispatch_assume_zero(r);
            }
            _dispatch_temporary_resource_shortage();
        }
    } while (--remaining);
#else // defined(_WIN32)
#if DISPATCH_USE_MGR_THREAD && DISPATCH_USE_PTHREAD_ROOT_QUEUES
    if (unlikely(dq == &_dispatch_mgr_root_queue)) {
        _dispatch_mgr_root_queue_init();
    }
#endif
    do {
        _dispatch_retain(dq); // released in _dispatch_worker_thread
#if DISPATCH_DEBUG
        unsigned dwStackSize = 0;
#else
        unsigned dwStackSize = 64 * 1024;
#endif
        uintptr_t hThread = 0;
        while (!(hThread = _beginthreadex(NULL, dwStackSize, _dispatch_worker_thread_thunk, dq, STACK_SIZE_PARAM_IS_A_RESERVATION, NULL))) {//创建线程
            if (errno != EAGAIN) {
                (void)dispatch_assume(hThread);
            }
            _dispatch_temporary_resource_shortage();
        }
        if (_dispatch_mgr_sched.prio > _dispatch_mgr_sched.default_prio) {
            (void)dispatch_assume_zero(SetThreadPriority((HANDLE)hThread, _dispatch_mgr_sched.prio) == TRUE);
        }
        CloseHandle((HANDLE)hThread);
    } while (--remaining);
#endif // defined(_WIN32)
#else
    (void)floor;
#endif // DISPATCH_USE_PTHREAD_POOL
}

在这里获取线程池数量,开辟新线程

static inline void
_dispatch_root_queues_init(void)
{
    dispatch_once_f(&_dispatch_root_queues_pred, NULL,
            _dispatch_root_queues_init_once);
}

这里可以看到root_queues初始化是个单例


static void
_dispatch_root_queues_init_once(void *context DISPATCH_UNUSED)
{
    _dispatch_fork_becomes_unsafe();
#if DISPATCH_USE_INTERNAL_WORKQUEUE
    size_t i;
    for (i = 0; i < DISPATCH_ROOT_QUEUE_COUNT; i++) {
        _dispatch_root_queue_init_pthread_pool(&_dispatch_root_queues[i], 0,
                _dispatch_root_queues[i].dq_priority);
    }
#else
    int wq_supported = _pthread_workqueue_supported();
    int r = ENOTSUP;

    if (!(wq_supported & WORKQ_FEATURE_MAINTENANCE)) {
        DISPATCH_INTERNAL_CRASH(wq_supported,
                "QoS Maintenance support required");
    }

#if DISPATCH_USE_KEVENT_SETUP
    struct pthread_workqueue_config cfg = {
        .version = PTHREAD_WORKQUEUE_CONFIG_VERSION,
        .flags = 0,
        .workq_cb = 0,
        .kevent_cb = 0,
        .workloop_cb = 0,
        .queue_serialno_offs = dispatch_queue_offsets.dqo_serialnum,
#if PTHREAD_WORKQUEUE_CONFIG_VERSION >= 2
        .queue_label_offs = dispatch_queue_offsets.dqo_label,
#endif
    };
#endif

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunreachable-code"
    if (unlikely(!_dispatch_kevent_workqueue_enabled)) {//工作队列的处理
#if DISPATCH_USE_KEVENT_SETUP
        cfg.workq_cb = _dispatch_worker_thread2;
        r = pthread_workqueue_setup(&cfg, sizeof(cfg));
#else
        r = _pthread_workqueue_init(_dispatch_worker_thread2,
                offsetof(struct dispatch_queue_s, dq_serialnum), 0);
#endif // DISPATCH_USE_KEVENT_SETUP
#if DISPATCH_USE_KEVENT_WORKLOOP
    } else if (wq_supported & WORKQ_FEATURE_WORKLOOP) {//事务循环
#if DISPATCH_USE_KEVENT_SETUP
        cfg.workq_cb = _dispatch_worker_thread2;
        cfg.kevent_cb = (pthread_workqueue_function_kevent_t) _dispatch_kevent_worker_thread;
        cfg.workloop_cb = (pthread_workqueue_function_workloop_t) _dispatch_workloop_worker_thread;
        r = pthread_workqueue_setup(&cfg, sizeof(cfg));
#else
        r = _pthread_workqueue_init_with_workloop(_dispatch_worker_thread2,
                (pthread_workqueue_function_kevent_t)
                _dispatch_kevent_worker_thread,
                (pthread_workqueue_function_workloop_t)
                _dispatch_workloop_worker_thread,
                offsetof(struct dispatch_queue_s, dq_serialnum), 0);
#endif // DISPATCH_USE_KEVENT_SETUP
#endif // DISPATCH_USE_KEVENT_WORKLOOP
#if DISPATCH_USE_KEVENT_WORKQUEUE
    } else if (wq_supported & WORKQ_FEATURE_KEVENT) {
#if DISPATCH_USE_KEVENT_SETUP
        cfg.workq_cb = _dispatch_worker_thread2;
        cfg.kevent_cb = (pthread_workqueue_function_kevent_t) _dispatch_kevent_worker_thread;
        r = pthread_workqueue_setup(&cfg, sizeof(cfg));
#else
        r = _pthread_workqueue_init_with_kevent(_dispatch_worker_thread2,
                (pthread_workqueue_function_kevent_t)
                _dispatch_kevent_worker_thread,
                offsetof(struct dispatch_queue_s, dq_serialnum), 0);
#endif // DISPATCH_USE_KEVENT_SETUP
#endif
    } else {
        DISPATCH_INTERNAL_CRASH(wq_supported, "Missing Kevent WORKQ support");
    }
#pragma clang diagnostic pop

    if (r != 0) {
        DISPATCH_INTERNAL_CRASH((r << 16) | wq_supported,
                "Root queue initialization failed");
    }
#endif // DISPATCH_USE_INTERNAL_WORKQUEUE
}

在这里根据内核的不同,初始化函数

栅栏函数

/**
 栅栏函数的演示说明:dispatch_barrier_sync/dispatch_barrier_async
 */
- (void)demo2{
    dispatch_queue_t concurrentQueue = dispatch_queue_create("cooci", DISPATCH_QUEUE_CONCURRENT);
    /* 1.异步函数 */
    dispatch_async(concurrentQueue, ^{
        sleep(1);
        NSLog(@"123");
    });
    /* 2. 栅栏函数 */
    dispatch_barrier_async(concurrentQueue, ^{
        NSLog(@"---------------------%@------------------------",[NSThread currentThread]);
    });
    /* 3. 异步函数 */
    dispatch_async(concurrentQueue, ^{
        NSLog(@"加载那么多,喘口气!!!");
    });
    NSLog(@"**********起来干!!");
}

这里的barrier拦截的是队列,async拦截的是线程,是用sync就会拦截主队列

    dispatch_queue_t concurrentQueue = dispatch_queue_create("cooci", DISPATCH_QUEUE_CONCURRENT);
    //    dispatch_queue_t concurrentQueue = dispatch_get_global_queue(0, 0);
    for (int i = 0; i<500; i++) {
        dispatch_async(concurrentQueue, ^{
            NSString *imageName = [NSString stringWithFormat:@"%d.jpg", (i % 10)];
            NSURL *url = [[NSBundle mainBundle] URLForResource:imageName withExtension:nil];
            NSData *data = [NSData dataWithContentsOfURL:url];
            UIImage *image = [UIImage imageWithData:data];
//            @synchronized (self) {
                [self.mArray addObject:image];
//            }
        });
    }

换多线程中对数据的新值retain,旧址release,这个线程如果还没retain,上个线程就已经release,就会添加个空值。如果这里不做任何处理,就会崩溃。
如果这里换成全局并发,也会崩溃,因为不止这里使用全局并发,还有很多系统方法使用了,全部进行了拦截,就会崩溃

dispatch_sync

void
dispatch_sync(dispatch_queue_t dq, dispatch_block_t work)
{
    uintptr_t dc_flags = DC_FLAG_BLOCK;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
    }
    _dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}

static void
_dispatch_sync_f(dispatch_queue_t dq, void *ctxt, dispatch_function_t func,
        uintptr_t dc_flags)
{
    _dispatch_sync_f_inline(dq, ctxt, func, dc_flags);
}

static inline void
_dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
    if (likely(dq->dq_width == 1)) {//串行
        return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);
    }
...
}

在这里我们可以看到如果是串行队列的话,就会barrier

static void
_dispatch_barrier_sync_f(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
    _dispatch_barrier_sync_f_inline(dq, ctxt, func, dc_flags);
}

static inline void
_dispatch_barrier_sync_f_inline(dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func, uintptr_t dc_flags)
{
//获取线程id
    dispatch_tid tid = _dispatch_tid_self();

    if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
        DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
    }

    dispatch_lane_t dl = upcast(dq)._dl;
    // The more correct thing to do would be to merge the qos of the thread
    // that just acquired the barrier lock into the queue state.
    //
    // However this is too expensive for the fast path, so skip doing it.
    // The chosen tradeoff is that if an enqueue on a lower priority thread
    // contends with this fast path, this thread may receive a useless override.
    //
    // Global concurrent queues and queues bound to non-dispatch threads
    // always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
//死锁
    if (unlikely(!_dispatch_queue_try_acquire_barrier_sync(dl, tid))) {
        return _dispatch_sync_f_slow(dl, ctxt, func, DC_FLAG_BARRIER, dl,
                DC_FLAG_BARRIER | dc_flags);
    }

    if (unlikely(dl->do_targetq->do_targetq)) {
        return _dispatch_sync_recurse(dl, ctxt, func,
                DC_FLAG_BARRIER | dc_flags);
    }
//准备操作
    _dispatch_introspection_sync_begin(dl);
    _dispatch_lane_barrier_sync_invoke_and_complete(dl, ctxt, func
            DISPATCH_TRACE_ARG(_dispatch_trace_item_sync_push_pop(
                    dq, ctxt, func, dc_flags | DC_FLAG_BARRIER)));
}


static void
_dispatch_lane_barrier_sync_invoke_and_complete(dispatch_lane_t dq,
        void *ctxt, dispatch_function_t func DISPATCH_TRACE_ARG(void *dc))
{
//在这里就会对block的执行
    _dispatch_sync_function_invoke_inline(dq, ctxt, func);
    _dispatch_trace_item_complete(dc);
    if (unlikely(dq->dq_items_tail || dq->dq_width > 1)) {
        return _dispatch_lane_barrier_complete(dq, 0, 0);
    }

    // Presence of any of these bits requires more work that only
    // _dispatch_*_barrier_complete() handles properly
    //
    // Note: testing for RECEIVED_OVERRIDE or RECEIVED_SYNC_WAIT without
    // checking the role is sloppy, but is a super fast check, and neither of
    // these bits should be set if the lock was never contended/discovered.
    const uint64_t fail_unlock_mask = DISPATCH_QUEUE_SUSPEND_BITS_MASK |
            DISPATCH_QUEUE_ENQUEUED | DISPATCH_QUEUE_DIRTY |
            DISPATCH_QUEUE_RECEIVED_OVERRIDE | DISPATCH_QUEUE_SYNC_TRANSFER |
            DISPATCH_QUEUE_RECEIVED_SYNC_WAIT;
    uint64_t old_state, new_state;

    // similar to _dispatch_queue_drain_try_unlock
//对状态的释放
    os_atomic_rmw_loop2o(dq, dq_state, old_state, new_state, release, {
        new_state  = old_state - DISPATCH_QUEUE_SERIAL_DRAIN_OWNED;
        new_state &= ~DISPATCH_QUEUE_DRAIN_UNLOCK_MASK;
        new_state &= ~DISPATCH_QUEUE_MAX_QOS_MASK;
        if (unlikely(old_state & fail_unlock_mask)) {
            os_atomic_rmw_loop_give_up({
            //告诉已经执行完毕了
                return _dispatch_lane_barrier_complete(dq, 0, 0);
            });
        }
    });
    if (_dq_state_is_base_wlh(old_state)) {
        _dispatch_event_loop_assert_not_owned((dispatch_wlh_t)dq);
    }
}

这是正常情况下,如果线程堵塞呢

static inline bool
_dispatch_queue_try_acquire_barrier_sync(dispatch_queue_class_t dq, uint32_t tid)
{
    return _dispatch_queue_try_acquire_barrier_sync_and_suspend(dq._dl, tid, 0);
}


static inline bool
_dispatch_queue_try_acquire_barrier_sync_and_suspend(dispatch_lane_t dq,
        uint32_t tid, uint64_t suspend_count)
{
    uint64_t init  = DISPATCH_QUEUE_STATE_INIT_VALUE(dq->dq_width);
    uint64_t value = DISPATCH_QUEUE_WIDTH_FULL_BIT | DISPATCH_QUEUE_IN_BARRIER |
            _dispatch_lock_value_from_tid(tid) |
            (suspend_count * DISPATCH_QUEUE_SUSPEND_INTERVAL);
    uint64_t old_state, new_state;

    return os_atomic_rmw_loop2o(dq, dq_state, old_state, new_state, acquire, {
        uint64_t role = old_state & DISPATCH_QUEUE_ROLE_MASK;
        if (old_state != (init | role)) {
            os_atomic_rmw_loop_give_up(break);
        }
        new_state = value | role;
    });
}

这里也调用了os_atomic_rmw_loop2o,如果状态判断成功,直接放弃掉
堵塞线程之后就会进行下一步

static void
_dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt,
        dispatch_function_t func, uintptr_t top_dc_flags,
        dispatch_queue_class_t dqu, uintptr_t dc_flags)
{
    dispatch_queue_t top_dq = top_dqu._dq;
    dispatch_queue_t dq = dqu._dq;
    if (unlikely(!dq->do_targetq)) {
        return _dispatch_sync_function_invoke(dq, ctxt, func);
    }

    pthread_priority_t pp = _dispatch_get_priority();
//在这里对block进行封装
    struct dispatch_sync_context_s dsc = {
        .dc_flags    = DC_FLAG_SYNC_WAITER | dc_flags,
        .dc_func     = _dispatch_async_and_wait_invoke,
        .dc_ctxt     = &dsc,
        .dc_other    = top_dq,
        .dc_priority = pp | _PTHREAD_PRIORITY_ENFORCE_FLAG,
        .dc_voucher  = _voucher_get(),
        .dsc_func    = func,
        .dsc_ctxt    = ctxt,
        .dsc_waiter  = _dispatch_tid_self(),//每个队列会绑定在一个线程里
    };
//把dsc干到队列里去
    _dispatch_trace_item_push(top_dq, &dsc);
    __DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);

    if (dsc.dsc_func == NULL) {
        // dsc_func being cleared means that the block ran on another thread ie.
        // case (2) as listed in _dispatch_async_and_wait_f_slow.
        dispatch_queue_t stop_dq = dsc.dc_other;
        return _dispatch_sync_complete_recurse(top_dq, stop_dq, top_dc_flags);
    }

    _dispatch_introspection_sync_begin(top_dq);
    _dispatch_trace_item_pop(top_dq, &dsc);
    _dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags
            DISPATCH_TRACE_ARG(&dsc));
}


__DISPATCH_WAIT_FOR_QUEUE__(dispatch_sync_context_t dsc, dispatch_queue_t dq)
{
    uint64_t dq_state = _dispatch_wait_prepare(dq);
    if (unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))) {
        DISPATCH_CLIENT_CRASH((uintptr_t)dq_state,
                "dispatch_sync called on queue "
                "already owned by current thread");
    }
...
}

判断当前队列是否是一个要等待的队列,再将当前任务依赖的队列和状态进行匹配

static inline bool
_dq_state_drain_locked_by(uint64_t dq_state, dispatch_tid tid)
{
    return _dispatch_lock_is_locked_by((dispatch_lock)dq_state, tid);
}

static inline bool
_dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid)
{
    // equivalent to _dispatch_lock_owner(lock_value) == tid
    return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}


#define DLOCK_OWNER_MASK            ((dispatch_lock)0xfffffffc)

异或操作,只要这两个相同就为0,DLOCK_OWNER_MASK永远不会为0,这个时候上面就会进入DISPATCH_CLIENT_CRASH产生死锁

信号量

dispatch_semaphore_create
dispatch_semaphore_t
dispatch_semaphore_create(long value)
{
    dispatch_semaphore_t dsema;

    // If the internal value is negative, then the absolute of the value is
    // equal to the number of waiting threads. Therefore it is bogus to
    // initialize the semaphore with a negative value.
    if (value < 0) {
        return DISPATCH_BAD_INPUT;
    }

    dsema = _dispatch_object_alloc(DISPATCH_VTABLE(semaphore),
            sizeof(struct dispatch_semaphore_s));
    dsema->do_next = DISPATCH_OBJECT_LISTLESS;
    dsema->do_targetq = _dispatch_get_default_queue(false);
    dsema->dsema_value = value;
    _dispatch_sema4_init(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
    dsema->dsema_orig = value;
    return dsema;
}

这里就是进行了 dispatch_semaphore_t创建

dispatch_semaphore_signal
long
dispatch_semaphore_signal(dispatch_semaphore_t dsema)
{
    long value = os_atomic_inc2o(dsema, dsema_value, release);
    if (likely(value > 0)) {
        return 0;
    }
    if (unlikely(value == LONG_MIN)) {
        DISPATCH_CLIENT_CRASH(value,
                "Unbalanced call to dispatch_semaphore_signal()");
    }
    return _dispatch_semaphore_signal_slow(dsema);//进去强等待
}

os_atomic_inc2o(dsema, dsema_value, release) =atomic_fetch_add_explicit(dsema->dsema_value, 1, \
        memory_order_release)

对这个进行原子性操作,就是dsema->dsema_value + 1

dispatch_semaphore_wait
long
dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
    long value = os_atomic_dec2o(dsema, dsema_value, acquire);
    if (likely(value >= 0)) {
        return 0;
    }
    return _dispatch_semaphore_wait_slow(dsema, timeout);
}

同上,进行-1操作

static long
_dispatch_semaphore_wait_slow(dispatch_semaphore_t dsema,
        dispatch_time_t timeout)
{
    long orig;

    _dispatch_sema4_create(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
    switch (timeout) {
    default:
        if (!_dispatch_sema4_timedwait(&dsema->dsema_sema, timeout)) {
            break;
        }
        // Fall through and try to undo what the fast path did to
        // dsema->dsema_value
    case DISPATCH_TIME_NOW:
        orig = dsema->dsema_value;
        while (orig < 0) {
            if (os_atomic_cmpxchgvw2o(dsema, dsema_value, orig, orig + 1,
                    &orig, relaxed)) {
                return _DSEMA4_TIMEOUT();
            }
        }
        // Another thread called semaphore_signal().
        // Fall through and drain the wakeup.
    case DISPATCH_TIME_FOREVER:
        _dispatch_sema4_wait(&dsema->dsema_sema);
        break;
    }
    return 0;
}
  • default:主要调用了_dispatch_sema4_timedwait方法,这个方法主要是判断当前的操作是否超过指定的超时时间。
  • DISPATCH_TIME_NOW中的while是一定会执行的,如果不满足条件,已经在之前的操作跳出了,不会执行到此。if操作调用os_atomic_cmpxchgvw2o,会将value进行+1,跳出阻塞,并返回_DSEMA4_TIMEOUT超时
  • DISPATCH_TIME_FOREVER中即调用_dispatch_sema4_wait,表示会一直阻塞,知道等到single加1变为0为止,跳出阻塞

将信号量value进行保存为两份dsema_valuedsema_orig,一个是当前的value,一个是记录初始 value。wait进行减1的操作,single进行加1的操作。如果为0或者小于0 并随后调用 wait 方法,线程将被阻塞直到别的线程调用了 signal 方法

调度组dispatch_group_t

dispatch_group_t的使用
    dispatch_group_t group = dispatch_group_create();

    dispatch_group_enter(group); // 0-1
    
    
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
        sleep(1);
        NSLog(@"123");
        dispatch_group_leave(group);
    });
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        NSLog(@"他们回来了 我准备主线程更新UI");
    });

这里简单的调用了dispatch_group_t

    dispatch_group_t group = dispatch_group_create();
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        NSLog(@"他们回来了 我准备主线程更新UI");
    });

    dispatch_group_enter(group); // 0-1

    dispatch_async(dispatch_get_global_queue(0, 0), ^{
        sleep(1);
        NSLog(@"123");
        dispatch_group_leave(group);
    });
    dispatch_group_enter(group);
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
//        sleep(1);
        NSLog(@"4567");
        dispatch_group_leave(group);
    });
    NSLog(@"主线程事务正常执行");
·······
主线程事务正常执行
 4567
他们回来了 我准备主线程更新UI
 123

  • dispatch_group_t只要有成对dispatch_group_enterdispatch_group_leave就会执行就会执行。
  • 如果dispatch_group_enter多执行一次就会一直等待。
  • 如果dispatch_group_leave多执行一次就会崩溃。
    dispatch_group_async(group, dispatch_get_global_queue(0, 0), ^{
        NSLog(@"890");
    });

dispatch_group_async相当于自动执行了dispatch_group_enterdispatch_group_leave

dispatch_group_create
dispatch_group_t
dispatch_group_create(void)
{
    return _dispatch_group_create_with_count(0);
}

static inline dispatch_group_t
_dispatch_group_create_with_count(uint32_t n)
{
    dispatch_group_t dg = _dispatch_object_alloc(DISPATCH_VTABLE(group),
            sizeof(struct dispatch_group_s));
    dg->do_next = DISPATCH_OBJECT_LISTLESS;
    dg->do_targetq = _dispatch_get_default_queue(false);
    if (n) {
        os_atomic_store2o(dg, dg_bits,
                (uint32_t)-n * DISPATCH_GROUP_VALUE_INTERVAL, relaxed);
        os_atomic_store2o(dg, do_ref_cnt, 1, relaxed); // <rdar://22318411>
    }
    return dg;
}

这里就是简单的初始化,通过os_atomic_store2o宏定义,内部维护了一个value的值

dispatch_group_leave
void
dispatch_group_leave(dispatch_group_t dg)
{
    // The value is incremented on a 64bits wide atomic so that the carry for
    // the -1 -> 0 transition increments the generation atomically.
    uint64_t new_state, old_state = os_atomic_add_orig2o(dg, dg_state,
            DISPATCH_GROUP_VALUE_INTERVAL, release);
    uint32_t old_value = (uint32_t)(old_state & DISPATCH_GROUP_VALUE_MASK);

    if (unlikely(old_value == DISPATCH_GROUP_VALUE_1)) {
        old_state += DISPATCH_GROUP_VALUE_INTERVAL;
        do {
            new_state = old_state;
            if ((old_state & DISPATCH_GROUP_VALUE_MASK) == 0) {
                new_state &= ~DISPATCH_GROUP_HAS_WAITERS;
                new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
            } else {
                // If the group was entered again since the atomic_add above,
                // we can't clear the waiters bit anymore as we don't know for
                // which generation the waiters are for
                new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
            }
            if (old_state == new_state) break;
        } while (unlikely(!os_atomic_cmpxchgv2o(dg, dg_state,
                old_state, new_state, &old_state, relaxed)));
        return _dispatch_group_wake(dg, old_state, true);
    }

    if (unlikely(old_value == 0)) {
        DISPATCH_CLIENT_CRASH((uintptr_t)old_value,
                "Unbalanced call to dispatch_group_leave()");
    }
}

os_atomic_add_orig2o进行原子性加操作,如果old_state == new_state,就进行唤醒操作_dispatch_group_wake

dispatch_group_enter
void
dispatch_group_enter(dispatch_group_t dg)
{
    // The value is decremented on a 32bits wide atomic so that the carry
    // for the 0 -> -1 transition is not propagated to the upper 32bits.
    uint32_t old_bits = os_atomic_sub_orig2o(dg, dg_bits,
            DISPATCH_GROUP_VALUE_INTERVAL, acquire);
    uint32_t old_value = old_bits & DISPATCH_GROUP_VALUE_MASK;
    if (unlikely(old_value == 0)) {
        _dispatch_retain(dg); // <rdar://problem/22318411>
    }
    if (unlikely(old_value == DISPATCH_GROUP_VALUE_MAX)) {
        DISPATCH_CLIENT_CRASH(old_bits,
                "Too many nested calls to dispatch_group_enter()");
    }
}

这里就是对dg_bits进行-1操作

dispatch_group_notify
void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_block_t db)
{
    dispatch_continuation_t dsn = _dispatch_continuation_alloc();
    _dispatch_continuation_init(dsn, dq, db, 0, DC_FLAG_CONSUME);
    _dispatch_group_notify(dg, dq, dsn);
}


DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_continuation_t dsn)
{
    uint64_t old_state, new_state;
    dispatch_continuation_t prev;

    dsn->dc_data = dq;
    _dispatch_retain(dq);

    prev = os_mpsc_push_update_tail(os_mpsc(dg, dg_notify), dsn, do_next);
    if (os_mpsc_push_was_empty(prev)) _dispatch_retain(dg);
    os_mpsc_push_update_prev(os_mpsc(dg, dg_notify), prev, dsn, do_next);
    if (os_mpsc_push_was_empty(prev)) {
        os_atomic_rmw_loop2o(dg, dg_state, old_state, new_state, release, {
            new_state = old_state | DISPATCH_GROUP_HAS_NOTIFS;
            if ((uint32_t)old_state == 0) {
                os_atomic_rmw_loop_give_up({
                    return _dispatch_group_wake(dg, new_state, false);
                });
            }
        });
    }
}

通过对os操作,获取state,最后判断结果相同,就进行唤醒操作_dispatch_group_wake

static void
_dispatch_group_wake(dispatch_group_t dg, uint64_t dg_state, bool needs_release)
{
    uint16_t refs = needs_release ? 1 : 0; // <rdar://problem/22318411>

    if (dg_state & DISPATCH_GROUP_HAS_NOTIFS) {
        dispatch_continuation_t dc, next_dc, tail;

        // Snapshot before anything is notified/woken <rdar://problem/8554546>
        dc = os_mpsc_capture_snapshot(os_mpsc(dg, dg_notify), &tail);
        do {
            dispatch_queue_t dsn_queue = (dispatch_queue_t)dc->dc_data;
            next_dc = os_mpsc_pop_snapshot_head(dc, tail, do_next);
            _dispatch_continuation_async(dsn_queue, dc,
                    _dispatch_qos_from_pp(dc->dc_priority), dc->dc_flags);
            _dispatch_release(dsn_queue);
        } while ((dc = next_dc));

        refs++;
    }

    if (dg_state & DISPATCH_GROUP_HAS_WAITERS) {
        _dispatch_wake_by_address(&dg->dg_gen);//地址释放
    }

    if (refs) _dispatch_release_n(dg, refs);//引用释放
}

这个通过循环,找到命中的队列,然后_dispatch_continuation_async执行函数

dispatch_group_async
void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_block_t db)
{
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME | DC_FLAG_GROUP_ASYNC;
    dispatch_qos_t qos;

    qos = _dispatch_continuation_init(dc, dq, db, 0, dc_flags);
    _dispatch_continuation_group_async(dg, dq, dc, qos);
}

常规的包装处理

static inline void
_dispatch_continuation_group_async(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_continuation_t dc, dispatch_qos_t qos)
{
    dispatch_group_enter(dg);
    dc->dc_data = dg;
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}

在这里执行了dispatch_group_enter操作,然后处理异步函数

static inline void
_dispatch_continuation_with_group_invoke(dispatch_continuation_t dc)
{
    struct dispatch_object_s *dou = dc->dc_data;
    unsigned long type = dx_type(dou);
    if (type == DISPATCH_GROUP_TYPE) {
        _dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
        _dispatch_trace_item_complete(dc);
        // 出组
        dispatch_group_leave((dispatch_group_t)dou);
    } else {
        DISPATCH_INTERNAL_CRASH(dx_type(dou), "Unexpected object type");
    }
}

函数执行完毕,执行dispatch_group_leave

Dispatch_Source

  • 其 CPU 负荷⾮常⼩,尽量不占⽤资源
  • 联结的优势
    在任⼀线程上调⽤它的的⼀个函数 dispatch_source_merge_data 后,会执⾏
    Dispatch Source 事先定义好的句柄(可以把句柄简单理解为⼀个 block )
    这个过程叫 Custom event ,⽤户事件。是 dispatch source ⽀持处理的⼀种事件
    句柄是⼀种指向指针的指针 它指向的就是⼀个类或者结构,它和系统有很密切的关系
    HINSTANCE(实例句柄),HBITMAP(位图句柄),HDC(设备表述句柄),HICON
    (图标句柄)等。这当中还有⼀个通⽤的句柄,就是HANDLE

dispatch_source_create: 创建源
dispatch_source_set_event_handler: 设置源事件回调
dispatch_source_merge_data: 源事件设置数据
dispatch_source_get_data: 获取源事件数据
dispatch_resume: 继续
dispatch_suspend: 挂起

dispatch_source不依赖于runloop而是依赖于kenel - workloop,所以使用DISPATCH_SOURCE_TYPE_TIMER计时器的时候回更加的准确

总结

  • dispatch_sync 将任务 block 通过 push 到队列中,然后按照 FIFO 去执行。
  • dispatch_sync造成死锁的主要原因是堵塞的tid和现在运行的tid为同一个
  • dispatch_async 会把任务包装并保存,之后就会开辟相应线程去执行已保存的任务。
  • semaphore 主要在底层维护一个value的值,使用 signal 进行 + +1,wait进行-1。如果value的值大于或者等于0,则取消阻塞,否则根据timeout参数进行超时判断
  • dispatch_group 底层也是维护了一个 value 的值,等待 group 完成实际上就是等待value恢复初始值。而notify的作用是将所有注册的回调组装成一个链表,在 dispatch_async 完成时判断 value 是不是恢复初始值,如果是则调用dispatch_async异步执行所有注册的回调。
  • dispatch_once 通过一个静态变量来标记 block 是否已被执行,同时使用加锁确保只有一个线程能执行,执行完 block 后会唤醒其他所有等待的线程。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342