app新后端分享

import numpy

my_test = numpy.genfromtxt("mytest.csv", delimiter=",")
print(type(my_test))
<class 'numpy.ndarray'>
vector = numpy.array([1, 2, 3, 4])
print(vector)
matrix = numpy.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
print(matrix)
[1 2 3 4]
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
print(vector.shape)
(4,)
print(matrix.shape)
(3, 4)
print(my_test)
[[             nan              nan              nan              nan
               nan]
 [  1.98600000e+03              nan              nan              nan
    0.00000000e+00]
 [  1.98600000e+03              nan              nan              nan
    5.00000000e-01]
 ..., 
 [  1.98700000e+03              nan              nan              nan
    7.50000000e-01]
 [  1.98900000e+03              nan              nan              nan
    1.50000000e+00]
 [  1.98500000e+03              nan              nan              nan
    3.10000000e-01]]
my_test2 = numpy.genfromtxt("mytest.csv", delimiter=",", dtype="U75", skip_header=1)
print(my_test2)
[['1986' 'Western Pacific' 'Viet Nam' 'Wine' '0']
 ['1986' 'Americas' 'Uruguay' 'Other' '0.5']
 ['1985' 'Africa' "Cte d'Ivoire" 'Wine' '1.62']
 ..., 
 ['1987' 'Africa' 'Malawi' 'Other' '0.75']
 ['1989' 'Americas' 'Bahamas' 'Wine' '1.5']
 ['1985' 'Africa' 'Malawi' 'Spirits' '0.31']]
print(my_test2[1,1])
Americas
matrix = numpy.array([
                    [5, 10, 15, 20], 
                    [20, 25, 30, 35],
                    [35, 40, 45, 50]
                 ])
print(matrix[1:3,0:3])
[[20 25 30]
 [35 40 45]]
matrix = numpy.array([
                    [5, 10, 15], 
                    [20, 25, 30],
                    [35, 40, 45]
                 ])
matrix == 25
array([[False, False, False],
       [False,  True, False],
       [False, False, False]], dtype=bool)
matrix = numpy.array([
                [5, 10, 15], 
                [20, 25, 30],
                [35, 40, 45]
             ])
second_column_25 = (matrix[:,1] == 25)
print(second_column_25)
print(matrix[second_column_25, :])
[False  True False]
[[20 25 30]]
vector = numpy.array([5, 10, 15, 20])
vector.sum()
50
matrix = numpy.array([
                [5, 10, 15], 
                [20, 25, 30],
                [35, 40, 45]
             ])
matrix.sum(axis=0
        )
array([60, 75, 90])
#replace nan value with 0
world_alcohol = numpy.genfromtxt("mytest.csv", delimiter=",")
#print world_alcohol
is_value_empty = numpy.isnan(world_alcohol[:,4])
#print is_value_empty
world_alcohol[is_value_empty, 4] = '0'
alcohol_consumption = world_alcohol[:,4]
alcohol_consumption = alcohol_consumption.astype(float)
total_alcohol = alcohol_consumption.sum()
average_alcohol = alcohol_consumption.mean()
print(total_alcohol)
print(average_alcohol)
1137.78
1.14006012024
import numpy as np
a = np.arange(16)
a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
a.reshape(4,4)
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
a.shape
(16,)
a.dtype
dtype('int64')
a.dtype.name
'int64'
np.ones( (2,3,4), dtype=np.int32 )
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]], dtype=int32)
np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
np.random.random((3,2))
array([[ 0.12534788,  0.3088895 ],
       [ 0.88039175,  0.99165413],
       [ 0.30894224,  0.07571642]])
from numpy import pi
np.linspace( 0, 2*pi, 100 )
array([ 0.        ,  0.06346652,  0.12693304,  0.19039955,  0.25386607,
        0.31733259,  0.38079911,  0.44426563,  0.50773215,  0.57119866,
        0.63466518,  0.6981317 ,  0.76159822,  0.82506474,  0.88853126,
        0.95199777,  1.01546429,  1.07893081,  1.14239733,  1.20586385,
        1.26933037,  1.33279688,  1.3962634 ,  1.45972992,  1.52319644,
        1.58666296,  1.65012947,  1.71359599,  1.77706251,  1.84052903,
        1.90399555,  1.96746207,  2.03092858,  2.0943951 ,  2.15786162,
        2.22132814,  2.28479466,  2.34826118,  2.41172769,  2.47519421,
        2.53866073,  2.60212725,  2.66559377,  2.72906028,  2.7925268 ,
        2.85599332,  2.91945984,  2.98292636,  3.04639288,  3.10985939,
        3.17332591,  3.23679243,  3.30025895,  3.36372547,  3.42719199,
        3.4906585 ,  3.55412502,  3.61759154,  3.68105806,  3.74452458,
        3.8079911 ,  3.87145761,  3.93492413,  3.99839065,  4.06185717,
        4.12532369,  4.1887902 ,  4.25225672,  4.31572324,  4.37918976,
        4.44265628,  4.5061228 ,  4.56958931,  4.63305583,  4.69652235,
        4.75998887,  4.82345539,  4.88692191,  4.95038842,  5.01385494,
        5.07732146,  5.14078798,  5.2042545 ,  5.26772102,  5.33118753,
        5.39465405,  5.45812057,  5.52158709,  5.58505361,  5.64852012,
        5.71198664,  5.77545316,  5.83891968,  5.9023862 ,  5.96585272,
        6.02931923,  6.09278575,  6.15625227,  6.21971879,  6.28318531])
B = np.arange(3)
print(B)
print(np.sqrt(B))
[0 1 2]
[ 0.          1.          1.41421356]
A = np.array( [[1,1],
               [0,1]] )
B = np.array( [[2,0],
               [3,4]] )

print(A.dot(B))
print(np.dot(A, B))
[[5 4]
 [3 4]]
[[5 4]
 [3 4]]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容