第九章 动态规划part11
1143.最长公共子序列
体会一下本题和 718. 最长重复子数组 的区别
文章讲解
题目
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
思路
继续动规五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
这样定义是为了后面代码实现方便,其实就是简化了dp数组第一行和第一列的初始化逻辑。确定递推公式
- 两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
- 如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
-
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
dp数组如何初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。-
确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。
举例推导dp数组
以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int len1 = text1.length();
int len2 = text2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(text1.charAt(i - 1) == text2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + 1;
}else{
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[len1][len2];
}
}
什么时候使用 i <= text1.length() 和 i < text1.length()
- 使用 i <= text1.length() 的情况:
当你在 DP 表中额外添加了一行和一列(通常初始化为 0),用来处理边界情况(即空字符串的情况),此时循环的范围需要包括这行这列,即 i 从 1 开始,直到 text1.length()(包含)。 - 使用 i < text1.length() 的情况:
当你没有额外添加这一行和一列,而是直接在 DP 表中使用索引 0 代表第一个字符,索引 text1.length() - 1 代表最后一个字符时,此时循环的范围是 i 从 0 开始,直到 text1.length() - 1(不包含 text1.length())。
1035.不相交的线
其实本题和 1143.最长公共子序列 是一模一样的,大家尝试自己做一做。
文章讲解
思路
绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; i++) {
for (int j = 1; j <= len2; j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[len1][len2];
}
}
53. 最大子序和
这道题我们用贪心做过,这次 再用dp来做一遍
文章讲解
动规五部曲如下:
确定dp数组(dp table)以及下标的含义
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。确定递推公式
dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);dp数组如何初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
dp[0]应该是多少呢?
根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。-
举例推导dp数组
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
class Solution {
public int maxSubArray(int[] nums) {
if(nums.length == 0) return 0;
int[] dp = new int[nums.length];
dp[0] = nums[0];
int res = nums[0];
for(int i = 1; i < nums.length; i++){
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
res = res > dp[i] ? res: dp[i];
}
return res;
}
}
392.判断子序列
这道题目算是 编辑距离问题 的入门题目(毕竟这里只是涉及到减法),慢慢的,后面就要来解决真正的 编辑距离问题了
文章讲解
思路
动态规划五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。确定递推公式
在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
- if (s[i - 1] == t[j - 1])
t中找到了一个字符在s中也出现了 - if (s[i - 1] != t[j - 1])
相当于t要删除元素,继续匹配 - if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)
- if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
- 其实这里 大家可以发现和 1143.最长公共子序列 的递推公式基本那就是一样的,区别就是 本题 如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。
-
dp数组如何初始化
因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
确定遍历顺序
同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右-
举例推导dp数组
以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:
class Solution {
public boolean isSubsequence(String s, String t) {
int len1 = s.length();
int len2 = t.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for(int i = 1; i <= len1; i++){
for(int j = 1; j <= len2; j++){
if(s.charAt(i - 1) == t.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1] + 1;
}else{
dp[i][j] = dp[i][j - 1];
}
}
}
if(dp[len1][len2] == len1) return true;
else return false;
}
}
用双指针似乎更简单,练习一下
class Solution {
public boolean isSubsequence(String s, String t) {
int sp = 0;
int tp = 0;
while(sp < s.length() && tp < t.length()){
if(s.charAt(sp) == t.charAt(tp)) sp++;
tp++;
}
if(sp == s.length()) return true;
else return false;
}
}