勾股定理·圓周率·無窮級數·微積分

勾股定理

勾股定理

圓形的概念的形成,是人類認知歷史上的一大里程碑。

圓周率

定义1

一个圆形的周长与直径之比:

定义2

以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积比。

圆与外接正方形

定义3

满足



的最小正实数。

y=sin(x)

这里的正弦函数定义为幂级数

百度百科:圆周率

Tamar Friedmann and Carl Hagen
18世纪沃利斯发现的经典圆周率公式

随着能量的增加,从变分解的极限公式里,哈根和弗里德曼找到了沃利斯的圆周率公式。

量子力学理论在20世纪初期诞生,而沃利斯圆周率公式已经存在了数百年,但这两者之间的内在关联直到今天才被发现。

代数

π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。

圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。

数学分析

Leibniz定理:


Wallis公式

高斯积分

A graph of the Gaussian function

The colored region between the function and the x-axis has area √π.

高斯分布

斯特林公式

π的连分数表示:


数论

两个任意自然数是互质概率

任取一个任意整数,该整数没有重复质因子的概率为

一个任意整数平均可用


个方法写成两个完全数之和。

概率论

设我们有一个以平行且等距木纹铺成的地板,随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。这就是布丰投针问题。1777 年,布丰自己解决了这个问题——这个概率值是 1/π。

统计学

正态分布概率密度函数

圆的内接正多边形和外接正多边形

π can be estimated by computing the perimeters of circumscribed and inscribed polygons.

古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。

公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率

公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率


和约率

歐拉公式

欧拉公式

[Euler's formula](https://en.m.wikipedia.org/wiki/Euler%27s_formula)

Euler's formula states that, for any [real number]

![](http://latex.codecogs.com/svg.latex?e^{ix}=\cos x+i\sin x)

![](http://latex.codecogs.com/svg.latex?e^{ix}=\cos x+i\sin x)

where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively, with the argument x given in radians.

三角函數分析

微積分

使用微积分,我们将圆象洋葱一样分为薄圆环,递增地求出面积。


对“洋葱”,以 t 为半径的无穷薄圆环,贡献的面积是 2πt dt,周长的长度乘以其无穷小宽度。这样对半径为 r 的圆给出了一个初等积分:

宇宙運行軌道

萬有引力定律

電磁場方程

相對論

相对论的场方程:

量子力學

海森堡不确定性原理

本文绘图使用:http://zh.numberempire.com/graphingcalculator.php,在次感谢作者!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • 本文为圆周率日特辑~ 简介 圆周率π是一个圆的周长与直径之比。即:π = C / d 。它是一个无限不循环小数,即...
    阿啊阿吖丁阅读 1,348评论 0 0
  • 文/叶秋臣 “你说肉香香请假?!刚工作第三天,就请假?!”提拉苏简直不相信自己的耳朵,他的表情一定像吞掉一整块盐巴...
    叶秋臣阅读 886评论 0 1
  • 昨天下雨了,没能跑步,今天就去补上了,明天继续。 下个月回学校把运动内衣拿过来,跑步这种高强度运动没运动内衣不行的...
    歌呗lrf阅读 198评论 0 0
  • 迄今为止,除了父母之外,谁对你的影响最大?ta教会了你什么? 想了许久..... 也看了大家的话题…… 目前的我,...
    不要垃圾阅读 252评论 9 4