TF Boys! TensorFlow机器学习入门

什么是TenseFlow

TensorFlow 是一个开源的机器学习库,在github的机器学习项目中高居第一位。

TF提供了非常多的机器学习API

Tense 表示张量

特征向量是机器学习中最有用的概念之一,因为它们的简单性(只是一个数字列表)。每个数据项通常由一个特征向量组成,而一个好的数据集有成百上千个这样的特征向量。毫无疑问,你经常会同时处理多个向量。一个矩阵可以简洁地表示一个向量列表,其中矩阵的每一列都是一个特征向量。

张量是矩阵的一种泛化,可以用任意数量的索引来指定一个元素。

张量是更多层的嵌套向量。例如,2×3×2 的张量是 [[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [ 11, 12]]],它可以被认为是两个大小为 3×2 的矩阵构成。因此,我们说这个张量的秩为 3。一般来说,张量的秩是指定一个元素所需的索引的数量。TensorFlow 中的机器学习算法作用于张量,因此真正理解如何使用它们非常重要.

下面的代码片段试图用三种方法表示相同的 2×3 矩阵。该矩阵表示两个维度的两个特征向量。

import tensorflow as tf
import numpy as np 

m1 = [[1.0, 2.0],
    [3.0, 4.0]] 

m2 = np.array([[1.0, 2.0],
    [3.0, 4.0]], dtype=np.float32) 

m3 = tf.constant([[1.0, 2.0],
    [3.0, 4.0]]) 

print(type(m1)) 
print(type(m2)) 
print(type(m3)) 

t1 = tf.convert_to_tensor(m1, dtype=tf.float32) 
t2 = tf.convert_to_tensor(m2, dtype=tf.float32) 
t3 = tf.convert_to_tensor(m3, dtype=tf.float32) 

print(type(t1)) 
print(type(t2)) 
print(type(t3)) 

第一个变量(m1)是一个列表,第二个变量(m2)是 NumPy 中的 ndarray,最后一个变量(m3)是我们使用 tf.constant 初始化的 TensorFlow 常量 Tensor 对象。

TensorFlow 中的所有运算符(例如负数)都是为张量对象而设计的

tf.convert_to_tensor(...) 是一个方便的函数,能够确保我们处理张量而不是其他类型。实际上,即使忘记了使用,TensorFlow 中的大多数函数也已经(冗余地)执行了此函数。使用 tf.convert_to_tensor(...) 是可选的,在这里展示它有助于揭开整个库处理隐式类型系统的神秘面纱。之前的代码片段输出以下结果三次:

<class 'tensorflow.python.framework.ops.Tensor'>
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容