基因组survey

基因组survey

在组装基因组之前一定要先对要组装的物种有一个大致的了解,判断其复杂程度, 标准如下

  • 基因组大小:基因组越大,测序花的钱越多
  • 简单基因组: 杂合度低于0.5%, GC含量在35%~65%, 重复序列低于50%
  • 二倍体普通基因组: 杂合度在0.5%~1.2%中间,重复序列低于50%。或杂合度低于0.5%,重复序列低于65%
  • 高复杂基因组: 杂合度>1.2% 或 重复率大于65%

k-mers估计法

最简单的策略就是基于k-mer对基因组做一个简单的了解, 使用jellyfish统计k-mers,然后作图

jellyfish count  -m 21 -s 20G -t 20 -o 21mer_out  -C  <(zcat test_1.fq.gz) <(zcat test_2.fq.gz)
# -m k-mers的K
# -s Hash大小, 根据文件大小确定
# -t 线程
# -o 输出前缀
# -C 统计正负链
jellyfish histo -o 21mer_out.histo 21mer_out

一些注意事项:

  1. 绝对不要用--min-qual-char或其他参数,它们会将低质量的碱基替换成N
  2. 在测序时由于不知道测得到底是DNA的哪一条链,因此k-mer及其互补链其实是等价的,所以一定要用-C参数

将数据导入R语言中,进行作图

pdf("21_mer.out.pdf")
dataframe19 <- read.table("21mer_out.histo")
plot(dataframe19[1:200,], type="l")
dev.off()
k-mers作图

由于只有一个主峰,说明该物种的杂合度并不高,基本上也就是二倍体。如果图中出现多个峰,说明它可能是多倍体或者是基因组杂合度高。

基因组大小(G)估计算法为:

G= K_{num} / K_{depth}

其中 K_{depth} 为K-mer的期望测序深度, K_{num} 为K-mer的总数。 通常将K-mer深度分布曲线的峰值作为其期望深度。

基因组的杂合性和使得来自杂合片段的K-mer深度较纯合区段降低50%。如果目标基因组有一定的杂合性,会在k-mer深度分布曲线主峰位置(c)的1/2处(c/2)出现一个小峰。杂合度越高,该峰越明显。

推荐文献: Genomic DNA k-mer spectra: models and modalities

基于组装

基于K-mers可以较好的预测基因组大小,并定性的了解基因组的复杂情况,如果想更具体的了解基因组的复杂度,可以先将50X以上的段片段进行组装,然后进行分析。

组装的工具比较多,推荐用SOAPdenovo,因为速度快。

新建一个contig.config, 增加如下内容

max_rd_len=150
[LIB]
avg_ins=200
reverse_seq=0
asm_flags=3
rd_len_cutoff=100
rank=1
pair_num_cutoff=3
map_len=32
q1=read_1.fq
q2=read_2.fq

组装出参考序列

~/opt/biosoft/SOAPdenovo2/SOAPdenovo-63mer all -s contig.config -R -K 63 -p 30 -o assembly/graph

最后graph.scafSeq是拼接后的序列, 提取出大于300bp的序列.

# adjust format
bioawk -c fastx -v name=1 '{if(length($seq)>300) print ">"name "\n" $seq;name+=1}' assembly/graph.scafSeq >contig.fa

杂合度估计

将原来的序列回贴到contig上,并用samtools+bcftools进行snp calling.统计变异的碱基占总体的比例。

mkdir -p index
bwa index contig.fa -p index/contig
bwa mem -v 2 -t 10 index/contig read_1.fq read_2.fq | samtools sort -n > align.bam
samtools mpileup -f contig align.bam | bcftools call -mv -Oz -o variants.gz

一方面由于SOAPdenovo组装过程中会出错, 另一方面samtools在变异检测上也存在很高的假阳性, 所以总得先按照深度和质量过滤一批假阳性。

bcftools view -i ' DP > 30 && MQ > 30' -H variants.vcf.gz | wc -l
# 325219, 无过滤是445113

变异数目占基因组大小的比例就是杂合度。我的contig大概是200M,找到0.3M左右的变异,也就是0.0015,即0.15%.

重复序列估计

基于同源注释,用RepeatMasker寻找重复序列. 这里要注意分析的fasta的ID不能过长,也就是最好是>scaffold_1这种形式,不然会报错。

~/opt/biosoft/RepeatMsker/RepeatMasker -e ncbi -species arabidopsis -pa 10 -gff -dir ./ contig.fa
# -e ncbi
# -species 选择物种 用~/opt/biosoft/RepeatMasker/util/queryRepeatDatabase.pl -tree 了解
# -pa 并行计算
# -gff 输出gff注释
# -dir 输出路径

输出结果中主要关注如下三个

  • output.fa.masked, 将重复序列用N代替
  • output.fa.out.gff, 以gff2形式存放重复序列出现的位置
  • output.fa.tbl, 该文件记录着分类信息
==================================================
file name: anno.fasta
sequences:         62027
total length:  273135210 bp  (273135210 bp excl N/X-runs)
GC level:         36.80 %
bases masked:   79642191 bp ( 29.16 %)
==================================================

也就是说我们的物种有30%的重复序列,作为参考,拟南芥125Mb 14%重复序列, 水稻389M,36%重复

附录:软件安装

安装RepeatMasker

cd ~/src
wget http://tandem.bu.edu/trf/downloadstrf409.linux64
mv trf409.linux64 ~/opt/bin/trf
chmod a+x ~/opt/bin/trf
# RMBlast
cd ~/src
wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.6.0/ncbi-blast-2.6.0+-src.tar.gz
wget http://www.repeatmasker.org/isb-2.6.0+-changes-vers2.patch.gz
tar xf ncbi-blast-2.6.0+-src
gunzip isb-2.6.0+-changes-vers2.patch.gz
cd ncbi-blast-2.6.0+-src
patch -p1 < ../isb-2.6.0+-changes-vers2.patch
cd c++
./configure --with-mt --prefix=~/opt/biosoft/rmblast --without-debug && make && make install
# RepeatMasker
cd ~/src
wget http://repeatmasker.org/RepeatMasker-open-4-0-7.tar.gz
tar xf RepeatMasker-open-4-0-7.tar.gz
mv RepeatMasker ~/opt/biosoft/
cd ~/opt/biosoft/RepeatMasker
## 解压repbase数据到Libraries下
## 配置RepatMasker
perl ./configure
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容