在我们进行数据查询时,不可避免要碰到分页的问题。我们通常会在返回数据表格页面下方显示如下信息用于对分页的信息的操作:
总数: 20000 [首页] [上一页] 2,[3],4,5 [下一页] [尾页]
当数据库中的数据量很大时,一次性查询所有结果会变得很慢,尤其时当需要用到分页的时候,速度会有明显的下降,这种情况,该怎么优化?
为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。
- 表名:order_history
- 描述:某个业务的订单历史表
- 主要字段:unsigned int id,tinyint(4) int type
- 字段情况:该表一共37个字段,不包含text等大型数据,最大为varchar(500),id字段为索引,且为递增。
- 数据量:5709294
- 测试结果:
select count(*) from orders_history;
返回结果:5709294
三次查询时间分别为:
8903 ms
8323 ms
8401 ms
一般分页查询
一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:
- 第一个参数指定第一个返回记录行的偏移量,注意从
0
开始 - 第二个参数指定返回记录行的最大数目
- 如果只给定一个参数:它表示返回最大的记录行数目
- 第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
- 初始记录行的偏移量是 0(而不是 1)
下面是一个应用实例:
select * from orders_history where type=8 limit 1000,10;
该条语句将会从表 orders_history 中查询 offset:1000
开始之后的10条数据,也就是第1001条到第1010条数据( 1001<=id<=1010
)。
数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:
select * from orders_history where type=8 order by id limit 10000,10;
三次查询时间分别为:
- 3040 ms
- 3063 ms
- 3018 ms
针对这种查询方式,下面测试查询记录量对时间的影响:
select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;
三次查询时间如下:
- 查询1条记录:3072ms 3092ms 3002ms
- 查询10条记录:3081ms 3077ms 3032ms
- 查询100条记录:3118ms 3200ms 3128ms
- 查询1000条记录:3412ms 3468ms 3394ms
- 查询10000条记录:3749ms 3802ms 3696ms
另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。
针对查询偏移量的测试:
select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;
三次查询时间如下:
- 查询100偏移:25ms 24ms 24ms
- 查询1000偏移:78ms 76ms 77ms
- 查询10000偏移:3092ms 3212ms 3128ms
- 查询100000偏移:3878ms 3812ms 3798ms
- 查询1000000偏移:14608ms 14062ms 14700ms
随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。
这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。
优化须知:偏移量越大,查询速度越慢
避免总数的查询
研究发现:随着时间的推移,越早产生的数据,价值越小,在数据量越大的情况下,用户对总数的敏感性越低。所以在数据量足够大的情况下,我们可以不在结果中返回总数(即去掉分页信息中的总数、首页、尾页信息),避免总数的查询。
没有了总数,我们如何计算上一页,下一页呢?
对于上一页:如果当前页为N页面,如上一页是(N-1)。如果N=1,则上一页不可以点击
对于下一页:假如每页显示 10 条数据,那么查询数据库的时候,用 “limit #offset#, 11” 取出 11 条记录,页面展现10条。如果取到了 11 条,说明下一页还有数据,在页面展示下一页按钮。如果结果集数量不足 11,说明已经到了最后一页,下一页显示不可以点击。
新的分页的信息的操作格式如下:
[上一页] 2,[3],4,5 [下一页]
事实上google和baidu就是这样做的。
在查看第一页搜索结果的时候google只会显示前十页(共100个条目),并不显示搜索结果条目总共有多少。
查看第二页的时候,仅仅会多显示一页。
如果必须要显示总数,可以使用如下方法:
方法一:缓存前N页的记录
研究发现:用户比较关心的是最近产生的一小部分数据。所以我们可以在用户查询的时候,一次性从数据库查询符合条件的 前N页条数据缓存起来,足够用户翻个几页,避免每次翻页都要查询数据库。
方法二:估算总结果数
如果用户可以接受不精确的总数,我们可以估算总结果数。如在mysql中通过EXPLAIN的”rows”列来快速估算结果总共有多少记录
EXPLAIN SELECT * FROM table where xxx in (1,2,3);
使用子查询优化
这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。
select * from orders_history where type=8 limit 100000,1;
select id from orders_history where type=8 limit 100000,1;
select * from orders_history where type=8 and id>=(select id from orders_history where type=8 limit 100000,1)limit 100;
select * from orders_history where type=8 limit 100000,100;
4条语句的查询时间如下:
- 第1条语句:3674ms
- 第2条语句:1315ms
- 第3条语句:1327ms
- 第4条语句:3710ms
针对上面的查询需要注意:
- 比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
- 比较第2条语句和第3条语句:速度相差几十毫秒
- 比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍
这种方式相较于原始一般的查询方法,将会增快数倍。
使用 id 限定优化
这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:
select * from orders_history where type=2 and id between 1000000 and 1000100 limit 100;
查询时间:
- 15ms
- 12ms
- 9ms
这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。
限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多便利。
还可以有另外一种写法:
select * from orders_history where id >= 1000001 limit 100;
当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:
select * from orders_history where id in(select order_id from trade_2 where goods = 'pen')limit 100;
这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。
使用临时表优化
这种方式已经不属于查询优化
对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。
关于数据表的id说明
一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。
如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。
使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 select id,然后再 select *;