python数据分析可视化,制作你想要的背景图词云

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

本文章来自腾讯云 作者:Python知识大全

词云百度百科:“词云”就是对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨

先上几张图片让大家欣赏一番:

这是我之前爬取的一篇文章并进行可视化而形成的词云


在这里插入图片描述

个性化——添加了个背景图

在这里插入图片描述

一般情况下对本狗来讲, 更喜欢词云。

废话少说, 开始教程:

1

需要的模块

import jieba
import numpy as np
from PIL import Image
from wordcloud import WordCloud
from matplotlib import pyplot as plt

2

小刀试牛

首先需要进行分词,也就是将一个句子分割成一个个的词语,我这里使用的是jieba分词

import jieba 
cut = jieba.cut(text)  #text为你需要分词的字符串/句子
string = ' '.join(cut)  #将分开的词用空格连接
print(string)

分好词后就需要将词做成词云了,我使用的是wordcloud

from matplotlib import pyplot as plt
from wordcloud import WordCloud

string = '''
 I volunteer to join the Communist Party of China, support the Party's program, abide by the Party's 
 Articles of Association, fulfill Party duties, implement Party decisions, strictly observe Party discipline, 
 keep the secrets of the Conservative Party, be loyal to the Party, work actively, and fight for communism for life. 
 We are always ready to sacrifice everything for the Party and the people and never defect to the Party.
'''
font = r'C:\Windows\Fonts\simfang.ttf' #设置字体路径 
wc = WordCloud(font_path=font, #如果是中文必须要添加这个,否则会显示成框框
               background_color='white',
               width=1000,
               height=800,
               ).generate(string)
wc.to_file('789.png') #保存图片
plt.imshow(wc)  #用plt显示图片
plt.axis('off') #不显示坐标轴
plt.show() #显示图片

效果图:


在这里插入图片描述

3

属性设置

font_path : string //字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf'
width : int (default=400) //输出的画布宽度,默认为400像素
height : int (default=200) //输出的画布高度,默认为200像素
prefer_horizontal : float (default=0.90) //词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 )
mask : nd-array or None (default=None) //如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread('读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。
scale : float (default=1) //按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍。
min_font_size : int (default=4) //显示的最小的字体大小
font_step : int (default=1) //字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差。
max_words : number (default=200) //要显示的词的最大个数
stopwords : set of strings or None //设置需要屏蔽的词,如果为空,则使用内置的STOPWORD
background_color : color value (default=”black”) //背景颜色,如background_color='white',背景颜色为白色。
max_font_size : int or None (default=None) //显示的最大的字体大小
mode : string (default=”RGB”) //当参数为“RGBA”并且background_color不为空时,背景为透明。
relative_scaling : float (default=.5) //词频和字体大小的关联
color_func : callable, default=None //生成新颜色的函数,如果为空,则使用 self.color_func
regexp : string or None (optional) //使用正则表达式分隔输入的文本
collocations : bool, default=True //是否包括两个词的搭配
colormap : string or matplotlib colormap, default=”viridis” //给每个单词随机分配颜色,若指定color_func,则忽略该方法。

4

自定义背景形状

通过添加 “mask=”这个属性, 来实现改变背景形状,但是
背景图片必须是白底,它会在你非白底的地方填充上文字,

所以最终我的代码是这样的:

import jieba
from matplotlib import pyplot as plt
from wordcloud import WordCloud
from PIL import Image
import numpy as np

path = r'文件存储的目录'
font = r'C:\Windows\Fonts\FZSTK.TTF'

text = (open(path+r'????.txt','r',encoding='utf-8')).read()
cut = jieba.cut(text)  #分词
string = ' '.join(cut)
print(len(string))
img = Image.open(path+r'\456.png') #打开背景图
img_array = np.array(img) #将图片装换为数组
stopword=['xa0']  #设置停止词,也就是你不想显示的词,这里这个词是我前期处理没处理好,你可以删掉他看看他的作用
wc = WordCloud(
    background_color='white',
    width=1000,
    height=800,
    mask=img_array,
    font_path=font,
    stopwords=stopword
)
wc.generate_from_text(string)#绘制图片
plt.imshow(wc)
plt.axis('off')
plt.figure()
plt.show()  #显示图片
wc.to_file(path+r'\123.png')  #保存图片

图片源


在这里插入图片描述

效果图:


在这里插入图片描述

词云就讲到这里, 本狗也是边学边写, 有欠缺的地方, 多多指教!!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容